• 제목/요약/키워드: Hybrid Kernel Function

검색결과 17건 처리시간 0.028초

Power Quality Disturbances Identification Method Based on Novel Hybrid Kernel Function

  • Zhao, Liquan;Gai, Meijiao
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.422-432
    • /
    • 2019
  • A hybrid kernel function of support vector machine is proposed to improve the classification performance of power quality disturbances. The kernel function mathematical model of support vector machine directly affects the classification performance. Different types of kernel functions have different generalization ability and learning ability. The single kernel function cannot have better ability both in learning and generalization. To overcome this problem, we propose a hybrid kernel function that is composed of two single kernel functions to improve both the ability in generation and learning. In simulations, we respectively used the single and multiple power quality disturbances to test classification performance of support vector machine algorithm with the proposed hybrid kernel function. Compared with other support vector machine algorithms, the improved support vector machine algorithm has better performance for the classification of power quality signals with single and multiple disturbances.

IKPCA-ELM-based Intrusion Detection Method

  • Wang, Hui;Wang, Chengjie;Shen, Zihao;Lin, Dengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3076-3092
    • /
    • 2020
  • An IKPCA-ELM-based intrusion detection method is developed to address the problem of the low accuracy and slow speed of intrusion detection caused by redundancies and high dimensions of data in the network. First, in order to reduce the effects of uneven sample distribution and sample attribute differences on the extraction of KPCA features, the sample attribute mean and mean square error are introduced into the Gaussian radial basis function and polynomial kernel function respectively, and the two improved kernel functions are combined to construct a hybrid kernel function. Second, an improved particle swarm optimization (IPSO) algorithm is proposed to determine the optimal hybrid kernel function for improved kernel principal component analysis (IKPCA). Finally, IKPCA is conducted to complete feature extraction, and an extreme learning machine (ELM) is applied to classify common attack type detection. The experimental results demonstrate the effectiveness of the constructed hybrid kernel function. Compared with other intrusion detection methods, IKPCA-ELM not only ensures high accuracy rates, but also reduces the detection time and false alarm rate, especially reducing the false alarm rate of small sample attacks.

혼합 시퀀스 커널을 이용한 조종사의 비동적 행위 모델링 (A Non-Kinetic Behavior Modeling for Pilots Using a Hybrid Sequence Kernel)

  • 최예림;전승욱;지철규;박종헌;신동민
    • 한국군사과학기술학회지
    • /
    • 제17권6호
    • /
    • pp.773-785
    • /
    • 2014
  • For decades, modeling of pilots has been intensively studied due to its advantages in reducing costs for training and enhancing safety of pilots. In particular, research for modeling of pilots' non-kinetic behaviors which refer to the decisions made by pilots is beneficial as the expertise of pilots can be inherent in the models. With the recent growth in the amount of combat logs accumulated, employing statistical learning methods for the modeling becomes possible. However, the combat logs consist of heterogeneous data that are not only continuous or discrete but also sequence independent or dependent, making it difficult to directly applying the learning methods without modifications. Therefore, in this paper, we present a kernel function named hybrid sequence kernel which addresses the problem by using multiple kernel learning methods. Based on the empirical experiments by using combat logs obtained from a simulator, the proposed kernel showed satisfactory results.

The coupling of complex variable-reproducing kernel particle method and finite element method for two-dimensional potential problems

  • Chen, Li;Liew, K.M.;Cheng, Yumin
    • Interaction and multiscale mechanics
    • /
    • 제3권3호
    • /
    • pp.277-298
    • /
    • 2010
  • The complex variable reproducing kernel particle method (CVRKPM) and the FEM are coupled in this paper to analyze the two-dimensional potential problems. The coupled method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, resulting in improved computational efficiency. A hybrid approximation function is applied to combine the CVRKPM with the FEM. Formulations of the coupled method are presented in detail. Three numerical examples of the two-dimensional potential problems are presented to demonstrate the effectiveness of the new method.

회귀용 Support Vector Machine의 성능개선을 위한 조합형 학습알고리즘 (Hybrid Learning Algorithm for Improving Performance of Regression Support Vector Machine)

  • 조용현;박창환;박용수
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.477-484
    • /
    • 2001
  • 본 논문에서는 회귀용 support vector machine의 성능 개선을 위한 모멘텀과 kernel-adatron 기법이 조합형 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 supper vector machine의 학습기법인 기술기상승법에 발생하는 최적해로의 수렴에 따란 발진을 억제하여 그수렴속도를 좀 더 개선시키는 모멘텀의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 갖는 kernel-adatorn 알고리즘의 장점을 그대로 살린 것이다. 제안된 알고리즘의 support vector machine을 1차원과 2차원 비선형 함수 회귀에 적용하여 시뮬레이션한 결과, 학습속도에 있어서 2차 프로그래밍과 기존의 kernel-adaton 알고리즘보다 더 우수하고, 회귀성능면에서도 우수한 성능이 있음을 확인하였다.

  • PDF

A Hybrid PSO-BPSO Based Kernel Extreme Learning Machine Model for Intrusion Detection

  • Shen, Yanping;Zheng, Kangfeng;Wu, Chunhua
    • Journal of Information Processing Systems
    • /
    • 제18권1호
    • /
    • pp.146-158
    • /
    • 2022
  • With the success of the digital economy and the rapid development of its technology, network security has received increasing attention. Intrusion detection technology has always been a focus and hotspot of research. A hybrid model that combines particle swarm optimization (PSO) and kernel extreme learning machine (KELM) is presented in this work. Continuous-valued PSO and binary PSO (BPSO) are adopted together to determine the parameter combination and the feature subset. A fitness function based on the detection rate and the number of selected features is proposed. The results show that the method can simultaneously determine the parameter values and select features. Furthermore, competitive or better accuracy can be obtained using approximately one quarter of the raw input features. Experiments proved that our method is slightly better than the genetic algorithm-based KELM model.

SURVEY OF GIBBS PHENOMENON FROM FOURIER SERIES TO HYBRID SAMPLING SERIES

  • SHIM HONG TAE;PARK CHIN HONG
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.719-736
    • /
    • 2005
  • An understanding of Fourier series and their generalization is important for physics and engineering students, as much for mathematical and physical insight as for applications. Students are usually confused by the so-called Gibbs' phenomenon, an overshoot between a discontinuous function and its approximation by a Fourier series as the number of terms in the series becomes indefinitely large. In this paper we give short story of Gibbs phenomenon in chronological order.

광회전 커널 오퍼레이션을 이용하는 방향성 정보 처리 (Directional Information Processing Using Optical Rotating Kernel Operations)

  • Yim Kul Lee
    • 전자공학회논문지B
    • /
    • 제30B권2호
    • /
    • pp.78-86
    • /
    • 1993
  • A nonlinear method for directional information processing is introduced, along with an application of directional feature enhancement. In this method, an input is convolved with a 2-D ong, norrow kernel, which is rotated through 360 degree, continuously or discretely in a large number of steps. An output is given by some function of the convolution results. Linear features that are aligned with the kernel are enhanced, otherwise, removed or suppressed. The method presented is insensitive to variation in the dimension of linear features to be processed and preserves a good enhancement capability even for an image characterized by low contrast and spatially varying brightness in noisy backgroung. Effects of the kernel legnth and width on the performance are discussed. A possible hybrid optical-electronic implementation is also discussed.

  • PDF

Linux 기반의 하이브리드 하드 디스크 시뮬레이터 설계 및 구현 (Design and Implementation of Hybrid Hard Disk Simulator based on Linux Environment)

  • 이근형;김덕환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.649-650
    • /
    • 2008
  • In order to resolve mechanical limit in HDD, recently, the hybrid hard disk combining HDD and a flash memory was launched. In this paper, we propose a simulator for hybrid hard disk which considers redirection, flushing and spin-down function to complement the difference between HDD and hybrid hard disk. The simulator was implemented in linux kernel 2.6.20 by modifying system calls related with file system. The experiment shows that the power consumption of hybrid hard disk is 47% smaller than that of hard disk in laptop PC.

  • PDF

Two dimensional reduction technique of Support Vector Machines for Bankruptcy Prediction

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Lee, Ki-Chun
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.608-613
    • /
    • 2007
  • Prediction of corporate bankruptcies has long been an important topic and has been studied extensively in the finance and management literature because it is an essential basis for the risk management of financial institutions. Recently, support vector machines (SVMs) are becoming popular as a tool for bankruptcy prediction because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. In addition, they don't require huge training samples and have little possibility of overfitting. However. in order to Use SVM, a user should determine several factors such as the parameters ofa kernel function, appropriate feature subset, and proper instance subset by heuristics, which hinders accurate prediction results when using SVM In this study, we propose a novel hybrid SVM classifier with simultaneous optimization of feature subsets, instance subsets, and kernel parameters. This study introduces genetic algorithms (GAs) to optimize the feature selection, instance selection, and kernel parameters simultaneously. Our study applies the proposed model to the real-world case for bankruptcy prediction. Experimental results show that the prediction accuracy of conventional SVM may be improved significantly by using our model.

  • PDF