• Title/Summary/Keyword: Hybrid Joint

Search Result 241, Processing Time 0.025 seconds

Design Evaluation of Pickup Device Collecting Deep-Sea-Manganese Nodules (심해저 망간단괴 집광기 채집장치의 설계평가)

  • Choi, Jong-Soo;Lee, Tae-Hee;Hong, Sub;Sim, Jae-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.68-74
    • /
    • 1998
  • Performance and efficiency of deep seabed collector is a primary factor for feasibility of commercial deep ocean mining. The efficiency of manganese nodules collector depends on vehicle mobility relative to undulating seafloor and is attributed pickup head to keep altitude and elevation of it against seafloor. For this reason, motion control of pickup head relative to the changing deep-sea topography and other disturbances is of particular importance in design of pickup device. The concept of design axiom is applied to a pickup device of hybrid type in order to evaluate the concept design. Kinematic analysis conducted in absolute Cartesian coordinates gives position, velocity, and acceleration of the hydraulic cylinders which enable the pickup head to keep the preset optimal distance from seafloor. Inverse dynamic analysis provides the driving forces of hydraulic cylinders and the reaction forces at each joint. Design sensitivity analysis is performed in order to investigate the effects of possible design variables on the change of the maximum strokes of hydraulic cylinders. The direct differentiation method is used to obtain the design sensitivity coefficients.

  • PDF

Developments of Fire-Resistant Wooden Structural Components and Those Applications to Mid- to High-Rise Buildings in Japan

  • Hanai, Atsunari;Nakai, Masayoshi;Matsuzaki, Hiroyuki;Ohashi, Hirokazu
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.221-233
    • /
    • 2020
  • Based on past experiences of natural disasters and fires in Japan, it is stipulated by law that fire-resistant buildings larger than a certain size should be unique in the world. Recent interest in global environmental issues has led to the active introduction of wooden buildings also in Japan, and it is expected that wooden buildings will become larger and higher in size. This paper introduces the background of the development of fire-resistant laminated timber with a "Self-Charring-Stop layer", the contents of this development including other related developments, and the application of these technologies. In addition, towards the realization of much larger and higher buildings in the future, the current problems and issues to be solved are set and the necessity of the future technological development is described. Finally, a conceptual model of wooden high-rise building is proposed, which will be able to be constructed in 2025 by the further technological development.

Prediction of moments in composite frames considering cracking and time effects using neural network models

  • Pendharkar, Umesh;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.267-285
    • /
    • 2011
  • There can be a significant amount of moment redistribution in composite frames consisting of steel columns and composite beams, due to cracking, creep and shrinkage of concrete. Considerable amount of computational effort is required for taking into account these effects for large composite frames. A methodology has been presented in this paper for taking into account these effects. In the methodology that has been demonstrated for moderately high frames, neural network models are developed for rapid prediction of the inelastic moments (typically for 20 years, considering instantaneous cracking, and time effects, i.e., creep and shrinkage, in concrete) at a joint in a frame from the elastic moments (neglecting instantaneous cracking and time effects). The proposed models predict the inelastic moment ratios (ratio of elastic moment to inelastic moment) using eleven input parameters for interior joints and seven input parameters for exterior joints. The training and testing data sets are generated using a hybrid procedure developed by the authors. The neural network models have been validated for frames of different number of spans and storeys. The models drastically reduce the computational effort and predict the inelastic moments, with reasonable accuracy for practical purposes, from the elastic moments, that can be obtained from any of the readily available software.

Effect of ${\gamma}$-Ray Irradiation on Surface Oxidation of Ultra High Molecular Weight Polyethylene/Zirconia Composite Prepared by in situ Ziegler-Natta Polymerization

  • Kwak, Soon-Jong;Noh, Dong-Il;Chun, Heung-Jae;Lim, Youn-Mook;Nho, Young-Chang;Jang, Ju-Woong;Shim, Young-Bock
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.603-608
    • /
    • 2009
  • Novel ultra-high molecular weight polyethylene (UHMWPE)/zirconia composites were previously prepared by the in situ polymerization of ethylene using a Ti-based Ziegler-Natta catalyst supported on to the surface of zirconia, as a bearing material for artificial joints. Tribological tests revealed that a uniform dispersion of zirconia in UHMWPE markedly increased the wear resistance. The effects of zirconia content on the oxidation behavior of the ${\gamma}$-ray-treated UHMWPE/zirconia composite surfaces were examined. The oxidation index that estimates the oxidation degree as the content of total carbonyl compounds was monitored using Fourier transform infrared spectroscopy-attenuated total reflectance. The changes in the surface composition due to the oxidation were confirmed by electron spectroscopy for chemical analysis. The extent of oxidation decreased with increasing zirconia content, which was attributed to the increased crystallinity as well as the decreased polymer portion of the UHMWPE/zirconia composites.

A Study on Laser Joining of Low Carbon Steel and Aluminum Alloy Part 1 : Process Parameters (강과 알루미늄의 레이저 접합에 관한 연구 Part 1 : 접합 변수의 최적 조건에 관한 연구)

  • Park, Tae-Wan;Cho, Jung-Ho;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.25-29
    • /
    • 2005
  • Steel has been mainly used in the automotive industry, because of good mechanical properties, weldability and so on. However, there has been increase in using aluminum to reduce the weight of vehicle. This leads to improve fuel efficiency and to reduce air pollution. A steel-aluminum hybrid body structure is recently used not only to reduce the weight of vehicle but also to increase safety. In this paper, the laser beam joining method is suggested to join steel and aluminum. To avoid making brittle intermetallic compounds(IMC) that reduce mechanical properties of the joint area, only aluminum is melted by laser irradiation and wetted on the steel surface. The brittle IMC layer is formed with small thickness at the interface between steel and aluminum. By controlling the process parameters, brittle IMC layer thickness is suppressed under 10 micrometers which is a criterion to maintain good mechanical properties.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

Risk Assessment of Tube Trailer Leaks at Hydrogen Charging Station (수소충전소 튜브트레일러 누출에 따른 위험성평가)

  • Park, Woo-Il;Yoon, Jin-Hee;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • In this study, risk assessment was conducted in case of leakage of storage facilities (tube trailer) using the HyKoRAM program developed through international joint research. The high-pressure gas facilities in the hydrogen filling station are divided into four main categories: storage facilities (tube trailers), processing facilities (compressors), compressed gas facilities, and filling facilities (dispensers). Among them, the design specifications of the tube trailer, which is a storage facility, and the surrounding environmental conditions were reflected to construct an accident scenario with previously occurring accidents and potential accidents. Through this, we identify the risks of storage facilities at hydrogen refueling stations and suggest measures to improve the safety of hydrogen charging stations.

Analysis of Safety by Expansion of Hydrogen Charging Station Facilities (수소충전소 설비 증설에 따른 안전성 해석)

  • Park, Woo-Il;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.83-90
    • /
    • 2020
  • This study conducted a risk assessment using the HyKoRAM program created by international joint research. Risk assessment was conducted based on accident scenarios and worst-case scenarios that could occur in the facility, reflecting design specifications of major facilities and components such as compressors, storage tanks, and hydrogen pipes in the hydrogen charging station, and environmental conditions around the demonstration complex. By identifying potential risks of hydrogen charging stations, we are going to derive the worst leakage, fire, explosion, and accident scenarios that can occur in hydrogen storage tanks, treatment facilities, storage facilities, and analyze the possibility of accidents and the effects of damage on human bodies and surrounding facilities to review safety.

Optimizing Energy-Latency Tradeoff for Computation Offloading in SDIN-Enabled MEC-based IIoT

  • Zhang, Xinchang;Xia, Changsen;Ma, Tinghuai;Zhang, Lejun;Jin, Zilong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4081-4098
    • /
    • 2022
  • With the aim of tackling the contradiction between computation intensive industrial applications and resource-weak Edge Devices (EDs) in Industrial Internet of Things (IIoT), a novel computation task offloading scheme in SDIN-enabled MEC based IIoT is proposed in this paper. With the aim of reducing the task accomplished latency and energy consumption of EDs, a joint optimization method is proposed for optimizing the local CPU-cycle frequency, offloading decision, and wireless and computation resources allocation jointly. Based on the optimization, the task offloading problem is formulated into a Mixed Integer Nonlinear Programming (MINLP) problem which is a large-scale NP-hard problem. In order to solve this problem in an accessible time complexity, a sub-optimal algorithm GPCOA, which is based on hybrid evolutionary computation, is proposed. Outcomes of emulation revel that the proposed method outperforms other baseline methods, and the optimization result shows that the latency-related weight is efficient for reducing the task execution delay and improving the energy efficiency.

Bird's Eye View Semantic Segmentation based on Improved Transformer for Automatic Annotation

  • Tianjiao Liang;Weiguo Pan;Hong Bao;Xinyue Fan;Han Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.1996-2015
    • /
    • 2023
  • High-definition (HD) maps can provide precise road information that enables an autonomous driving system to effectively navigate a vehicle. Recent research has focused on leveraging semantic segmentation to achieve automatic annotation of HD maps. However, the existing methods suffer from low recognition accuracy in automatic driving scenarios, leading to inefficient annotation processes. In this paper, we propose a novel semantic segmentation method for automatic HD map annotation. Our approach introduces a new encoder, known as the convolutional transformer hybrid encoder, to enhance the model's feature extraction capabilities. Additionally, we propose a multi-level fusion module that enables the model to aggregate different levels of detail and semantic information. Furthermore, we present a novel decoupled boundary joint decoder to improve the model's ability to handle the boundary between categories. To evaluate our method, we conducted experiments using the Bird's Eye View point cloud images dataset and Cityscapes dataset. Comparative analysis against stateof-the-art methods demonstrates that our model achieves the highest performance. Specifically, our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic annotation.