• Title/Summary/Keyword: Hybrid Intelligent Algorithm

Search Result 190, Processing Time 0.026 seconds

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

A New Hybrid Genetic Algorithm for Nonlinear Channel Blind Equalization

  • Han, Soowhan;Lee, Imgeun;Han, Changwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.259-265
    • /
    • 2004
  • In this study, a hybrid genetic algorithm merged with simulated annealing is presented to solve nonlinear channel blind equalization problems. The equalization of nonlinear channels is more complicated one, but it is of more practical use in real world environments. The proposed hybrid genetic algorithm with simulated annealing is used to estimate the output states of nonlinear channel, based on the Bayesian likelihood fitness function, instead of the channel parameters. By using the desired channel states derived from these estimated output states of the nonlinear channel, the Bayesian equalizer is implemented to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a conventional genetic algorithm(GA) and a simplex GA. In particular, we observe a relatively high accuracy and fast convergence of the method.

Mobility-Based Clustering Algorithm for Multimedia Broadcasting over IEEE 802.11p-LTE-enabled VANET

  • Syfullah, Mohammad;Lim, Joanne Mun-Yee;Siaw, Fei Lu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1213-1237
    • /
    • 2019
  • Vehicular Ad-hoc Network (VANET) facilities envision future Intelligent Transporting Systems (ITSs) by providing inter-vehicle communication for metrics such as road surveillance, traffic information, and road condition. In recent years, vehicle manufacturers, researchers and academicians have devoted significant attention to vehicular communication technology because of its highly dynamic connectivity and self-organized, decentralized networking characteristics. However, due to VANET's high mobility, dynamic network topology and low communication coverage, dissemination of large data packets (e.g. multimedia content) is challenging. Clustering enhances network performance by maintaining communication link stability, sharing network resources and efficiently using bandwidth among nodes. This paper proposes a mobility-based, multi-hop clustering algorithm, (MBCA) for multimedia content broadcasting over an IEEE 802.11p-LTE-enabled hybrid VANET architecture. The OMNeT++ network simulator and a SUMO traffic generator are used to simulate a network scenario. The simulation results indicate that the proposed clustering algorithm over a hybrid VANET architecture improves the overall network stability and performance, resulting in an overall 20% increased cluster head duration, 20% increased cluster member duration, lower cluster overhead, 15% improved data packet delivery ratio and lower network delay from the referenced schemes [46], [47] and [50] during multimedia content dissemination over VANET.

The Hybrid Knowledge Integration Using the Fuzzy Genetic Algorithm

  • Kim, Myoung-Jong;Ingoo Han;Lee, Kun-Chang
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.145-154
    • /
    • 1999
  • An intelligent system embedded with multiple sources of knowledge may provide more robust intelligence with highly ill structured problems than the system with a single source of knowledge. This paper proposes the hybrid knowledge integration mechanism that yields the cooperated knowledge by integrating expert, user, and machine knowledge within the fuzzy logic-driven framework, and then refines it with a genetic algorithm (GA) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Empirical results show that the proposed mechanism can make an intelligent system with the more adaptable and robust intelligence.

  • PDF

Reliability Optimization Problems using Adaptive Hybrid Genetic Algorithms

  • Minoru Mukuda;Yun, Young-Su;Mitsuo Gen
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.179-182
    • /
    • 2003
  • This paper proposes an adaptive hybrid genetic algorithm (aHGA) for effectively solving the complex reliability optimization problems. The proposed aHGA uses a loca1 search technique and an adaptive scheme for respectively constructing hybrid algorithm and adaptive ability. For more various comparisons with the proposed adaptive algorithm, other aHGAs with conventional adaptive schemes are considered. These aHGAs are tested and analyzed using two complex reliability optimization problems. Numerical result shows that the proposed aHGA outperforms the other competing aHGAs.

  • PDF

Hybrid BFPSO Approach for Effective Tuning of PID Controller for Load Frequency Control Application in an Interconnected Power System

  • Anbarasi, S.;Muralidharan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1027-1037
    • /
    • 2017
  • Penetration of renewable energy sources makes the modern interconnected power systems to have more intelligence and flexibility in the control. Hence, it is essential to maintain the system frequency and tie-line power exchange at nominal values using Load Frequency Control (LFC) for efficient, economic and reliable operation of power systems. In this paper, intelligent tuning of the Proportional Integral Derivative (PID) controller for LFC in an interconnected power system is considered as a main objective. The chosen problem is formulated as an optimization problem and the optimal gain parameters of PID controllers are computed with three innovative swarm intelligent algorithms named Particle Swarm Optimization (PSO), Bacterial Foraging Optimization Algorithm (BFOA) and hybrid Bacterial Foraging Particle Swarm Optimization (BFPSO) and a comparative study is made between them. A new objective function designed with necessary time domain specifications using weighted sum approach is also offered in this report and compared with conventional objective functions. All the simulation results clearly reveal that, the hybrid BFPSO tuned PID controller with proposed objective function has better control performances over other optimization methodologies.

A Hybrid Genetic Algorithm for K-Means Clustering

  • Jun, Sung-Hae;Han, Jin-Woo;Park, Minjae;Oh, Kyung-Whan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.330-333
    • /
    • 2003
  • Initial cluster size for clustering of partitioning methods is very important to the clustering result. In K-means algorithm, the result of cluster analysis becomes different with optimal cluster size K. Usually, the initial cluster size is determined by prior and subjective information. Sometimes this may not be optimal. Now, more objective method is needed to solve this problem. In our research, we propose a hybrid genetic algorithm, a tree induction based evolution algorithm, for determination of optimal cluster size. Initial population of this algorithm is determined by the number of terminal nodes of tree induction. From the initial population based on decision tree, our optimal cluster size is generated. The fitness function of ours is defined an inverse of dissimilarity measure. And the bagging approach is used for saying computational time cost.

  • PDF

An Intelligent System for Recognition of Identifiers from Shipping Container Images using Fuzzy Binarization and Enhanced Hybrid Network

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.349-356
    • /
    • 2004
  • The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. In this paper we propose and evaluate a novel recognition algorithm for container identifiers that effectively overcomes these difficulties and recognizes identifiers from container images captured in various environments. The proposed algorithm, first, extracts the area containing only the identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper. Then a contour tracking method is applied to the binarized area in order to extract the container identifiers which are the target for recognition. In this paper we also propose and apply a novel ART2-based hybrid network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm performs better for extraction and recognition of container identifiers compared to conventional algorithms.

Design of IG-based Fuzzy Models Using Improved Space Search Algorithm (개선된 공간 탐색 알고리즘을 이용한 정보입자 기반 퍼지모델 설계)

  • Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.686-691
    • /
    • 2011
  • This study is concerned with the identification of fuzzy models. To address the optimization of fuzzy model, we proposed an improved space search evolutionary algorithm (ISSA) which is realized with the combination of space search algorithm and Gaussian mutation. The proposed ISSA is exploited here as the optimization vehicle for the design of fuzzy models. Considering the design of fuzzy models, we developed a hybrid identification method using information granulation and the ISSA. Information granules are treated as collections of objects (e.g. data) brought together by the criteria of proximity, similarity, or functionality. The overall hybrid identification comes in the form of two optimization mechanisms: structure identification and parameter identification. The structure identification is supported by the ISSA and C-Means while the parameter estimation is realized via the ISSA and weighted least square error method. A suite of comparative studies show that the proposed model leads to better performance in comparison with some existing models.

A Hybrid Genetic Algorithm for Solving Nonlinear Optimization Problems (비선형 최적화문제 해결을 위한 혼합유전알고리즘)

  • 윤영수;문치웅;이상용
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.11-22
    • /
    • 1997
  • 본 연구에서는 비선형 최적화 문제를 효율적으로 해결하기 위한 혼합유전알고리즘(Hybrid Genetic Algorthm : HGA)을 개발하였다. HGA는 기존 유전알고리즘의 적용에 있어 문제점으로 지적된 정밀도의 적용문제와 벌금함수의 사용을 배제하였으며 지역적최적점으로 빠르게 수렴하는 기존의 지역적 탐색법과 유전알고리즘 적용이후 수렴된 해 주변에 대한 정밀탐색법을 함께 고려하여 설계하였으며 이를 세가지의 비선형 최적화 문제 적용하여 본 논문에서 개발한 HGA의 유효성을 보였다.

  • PDF