• 제목/요약/키워드: Hybrid Fuel Cell

검색결과 303건 처리시간 0.025초

운전비용 절감을 위한 가정용 연료전지 시스템의 운전전략 수립 (A simulation study on operation strategy of residential fuel cell system for cost curtailment)

  • 황수영;김민진;이진호;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.55-58
    • /
    • 2008
  • Residential fuel cell cogeneration systems have gained much interest due to its high efficiency. In this study, we have performed numerical simulation of residential fuel cell cogeneration system which includes a fuel cell/grid hybrid system. The cogeneration system consists of 1kW PEFC, cooling system, inverter/converter and reformer. Several empirical models have been employed for respective components to improve the accuracy of the simulations. The load varies seasonally. The present simulations can successfully predict the characteristics of the hybrid cogeneration system and thus it can be utilized for establishing an optimal operating strategy of the system.

  • PDF

가정용 연료전지 시스템 대상 시뮬레이션 기반 비용절감 기법 연구 (A simulation study on residential fuel cell system for cost curtailment)

  • 황수영;김민진;이진호;이원용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3148-3153
    • /
    • 2008
  • Residential fuel cell cogeneration systems have gained much interest due to its high efficiency. In this study, we have performed numerical simulation of residential fuel cell cogeneration system which includes a fuel cell/grid hybrid system. The cogeneration system consists of 1kW PEFC, cooling system, inverter/converter and reformer. Several empirical models have been employed for respective components to improve the accuracy of the simulations. The load varies seasonally. The present simulations can successfully predict the characteristics of the hybrid cogeneration system and thus it can be utilized for establishing an optimal operating strategy of the system.

  • PDF

가스터빈 압력비 변화에 따른 고체 산화물 연료전지/가스터빈 하이브리드 시스템의 설계 성능 해석 (Design Performance Analysis of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems for Various Gas Turbine Pressure Ratios)

  • 박성구;김동섭
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.885-890
    • /
    • 2006
  • This study presents analysis results for the hybrid system combining solid oxide fuel cell and gas turbine. Two different system layouts(an ambient pressure system and pressurized system) are considered and their design performance are comparatively investigated taking into account critical design factor, the most critical parameter such as turbine inlet temperature, gas turbine pressure ratio, temperature difference at the fuel cell and fuel cell operating temperature are considered as design constraints. Performance variations according to system layout and design parameters are examined in energetic view point.

  • PDF

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

등가 연료 소모량을 이용한 연료전지 자동차의 하이브리화에 대한 평가 (Evaluation of Hybridization in FCVs Based on Equivalent Fuel Consumption)

  • 정춘화;신창우;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.143-147
    • /
    • 2011
  • Operating points of a fuel cell system (FCS) can be shifted to its high-efficiency region by hybridization in a fuel cell hybrid vehicle (FCHV), so the hydrogen can be saved. In this paper, the hydrogen consumption of an FCHV is compared to that of a fuel cell vehicle (FCV). A power management strategy is applied to the FCHV and the related simulation is carried out. The concept of equivalent hydrogen consumption is introduced in order to consider the effect of the difference between initial and final battery SOC on the total hydrogen consumption.

스팀분사를 고려한 SOFC/GT 하이브리드 시스템의 설계 성능 비교 분석 (Design Performance Analysis of Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Steam Injection)

  • 박성구;김동섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3224-3229
    • /
    • 2007
  • This study aims to analyse the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. The steam is generated by recovering heat from the exhaust gas. Two system configurations, with difference being the operating pressure of the SOFC, are examined and effects of steam injection on performances of the two systems are compared. Two representative gas turbine pressure ratios are simulated and a wide range of both the fuel cell temperature and the turbine inlet temperature is examined. Without steam injection, the pressurized system generally exhibits better system efficiency than the ambient pressure system. Steam injection increases system power capacity for all design cases. However, its effect on system efficiency varies much depending on design conditions. The pressurized system hardly takes advantage of the steam injection in terms of the system efficiency. On the other hand, steam injection contributes to the efficiency improvement of the ambient pressure system in some design conditions. A higher pressure ratio provides a better chance of efficiency increase due to steam injection.

  • PDF

하이브리드 및 연료전지 연계형 해양구조물용 전력체계 (Hybrid & Fuel Cell Connection Power System for Ocean Structure)

  • 박도영;오진석
    • 한국항해항만학회지
    • /
    • 제35권8호
    • /
    • pp.637-641
    • /
    • 2011
  • 해양구조물 전력시스템은 독립형 전력체계를 구축하기 어렵다. 그러므로 해상용 전력시스템을 효과적으로 운영하기 위하여 연료전지 및 하이브리드 전력체계를 연동한 전력시스템을 구축하는 것이 중요하다. 본 연구에서는 연료전지 기반의 해양구조물용 전력체계 설계에 필요한 수소 발생 메카니즘, 사용 전력량 계산과정 등을 기초로 해상용 연료전지 기반의 전력체계를 설계하고, 설계된 전력 시스템을 LabVIEW 프로그램을 활용하여 시뮬레이션 및 분석하였으며, 이를 기반으로 해양구조물용 전력시스템 설계 방안을 제안하고자 한다.

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

연료전지 하이브리드 자동차의 동력전달계의 용량 선정 (Sizing of Powertrain in Fuel Cell Hybrid Vehicles)

  • 정춘화;신창우;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.113-118
    • /
    • 2011
  • Fuel Cell Hybrid Vehicle (FCHV) is one of the most promising candidates for the next generation of transportation. It has many outstanding advantages such as higher energy efficiency and much lower emissions than internal combustion engine vehicles. It also has the ability of recovering braking energy. In order to design an FCHV drive train, we need to determine the size of the electric motor, the Fuel Cell System (FCS), and the battery. In this paper, the methodology for the sizing of these components is introduced based on the driveability constraints of the FCHV. A power management strategy is also presented because the battery energy capacity depends on it. The warm-up time of the FCS is also considered in the power management strategy and the simulation result is compared to that without considering the warm-up time.