• Title/Summary/Keyword: Hybrid Energy

Search Result 1,978, Processing Time 0.024 seconds

Performance Analysis of Hybrid DS/FH-CDMA over Nakagami Fading Channels with Near-Far Problem (원근문제와 나카가미 페이딩을 고려한 하이브리드 DS/FH-CDMA 방식의 성능 분석)

  • 임태길;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1118-1130
    • /
    • 1999
  • In this paper, error performance of DS/FH CDMA system has been analyzed in a radio channel which is characterized by near-far problem and multi-path fading. The DS/FH CDMA system adopts Maximum Ratio Combining(MRC) diversity and BCH(Bose-Chau dhuri-Hocquenghem) coding techniques to enhance system performance. Using the derived error probability equation, the error performance of DS/FH CDMA system has been evaluated and shown in figures to discuss as a function of PN code length(N), hopping rate(q), number of diversity branch(M), coding rate($\gamma$) and bit energy per noise power ratio ${E_b/N_o}$. The results show that DS/FH system is more effective to restrain the affection of near-far problem and multi-path fading than DS system. And there is a substantial enhancement in performance by employing an MRC diversity or BCH coding techniques. Consequently, we expected that proposed system structure is reliable to the voice communication system in near-far problem and multi-path fading channel.

  • PDF

A Property of Crack Propagation at the Specimen of CFRP with Layer Angle (적층각도를 지닌 CFRP 시험편에서의 크랙전파 특성)

  • Hwang, Gue Wan;Cho, Jae Ung;Cho, Chong Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1013-1019
    • /
    • 2016
  • CFRP is the composite material manufactured by the hybrid resin on the basis of carbon fiber. As this material has the high specific strength and the light weight, it has been widely used at various fields. Particularly, the unidirectional carbon fiber can be applied with the layer angle. CFRP made with layer angle has the strength higher than with no layer angle. In this paper, the property of crack growth due to each layer angle was investigated on the crack propagation and fracture behavior of the CFRP compact tension specimen due to the change of layer angle. The value of maximum stress is shown to be decreased and the crack propagation is slowed down as the layer angle is increased. But the limit according to the layer angle is shown as the stress is increased again from the base point of the layer angle of $60^{\circ}$. This study result is thought to be utilized with the data which verify the probability of fatigue fracture when the defect inside the structure at using CFRP of mechanical structure happens.

A Study on the Strength Safety of a Gas Valve (가스밸브의 강도안전성에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.60-63
    • /
    • 2018
  • This paper presents the FEM analysis results on the strength safety of a gas valve for a LPG cylinder. Based on the FEM analysis, the maximum von Mises stress on the boundary zone between a safety valve and the upper area of the thread is 99.2 MPa for the supplied gas pressure of 3.5 MPa in which the gas valve is fully opened. The maximum von Mises stress of 99.2 MPa is considered as safety value, because that value is lower than the yield stress of a brass material. In this case, the maximum deformation at the upper right part of the pressure regulator is 0.002mm. The maximum deformation zone is not a meaning part of the sealing part such as an O-ring or a diaphragm of a gas valve and a pressure regulator. The proposed hybrid gas valve model in which is integrated with a conventional cut-off valve and a pressure regulator is recommended as a gas leakage free mechanism and minimized compact size for a LPG cylinder.

A Study on the Characteristics of Hybrid-Plasma Torch for Dyeing Wastewater Treatment (염색폐수 처리를 위한 하이브리드 플라즈마 특성연구)

  • Jung, Jang-Gun;Youn, Seok-Hyun;Park, Jae-Youn;Kim, Sang-Don
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.75-81
    • /
    • 2008
  • Water treatment study employing plasma is thoroughly examined in the following paper. The research using water plasma torch showed superior results in terms of economical and energy efficiency due to the substantial reduction of electric power. A comparison of streamer and arc discharge phenomena taken place in water was put under close scrutiny. Dyeing wastewater exposed to the plasma treatment was sampled and analyzed for relative dissolved ozone concentration, hydrogen peroxide, as well as the color removal efficiency. It was found that streamer discharges is more effective than arc discharge in growth of $H_2O_2$ and $O_3$ by plasma chemical constituents, though plasma torch had small oxidation reagents selectivity. Thus, streamer discharges, due to the efficient plasma-chemical reactions environment, proved to be more efficient compare to the thermal arc plasma loading.

An Efficient Data Dissemination Protocol for Cluster-based Wireless Sensor Networks (클러스터 기반의 무선 센서네트워크에서 통신량을 줄인 데이터 보급방법)

  • Cho, Ji-Eun;Choe, Jong-Won
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.222-230
    • /
    • 2009
  • A sensor network is an important element of the ubiquitous and it consists of sensor fields that contain sensor nodes and sink nodes that collect data from sensor nodes. Since each sensor node has limited resources, one of the important issues covered in the past sensor network studies has been maximizing the usage of limited energy to extend network lifetime. However, most studies have only considered fixed sink nodes, which created various problems for cases with multiple mobile sink nodes. Accordingly, while maintaining routes to mobile sink nodes, this study aims to deploy the hybrid communication mode that combines single and multi-hop modes for intra-cluster and inter-cluster transmission to resolve the problem of failed data transmission to mobile sink nodes caused by disconnected routes. Furthermore, a 2-level hierarchical routing protocol was used to reduce the number of sensor nodes participating in data transmission, and cross-shape trajectory forwarding was employed in packet transmission to provide an efficient data dissemination method.

Effect of ALD-Al2O3 Passivation Layer on the Corrosion Properties of CrAlSiN Coatings (ALD-Al2O3 보호층이 적용된 CrAlSiN 코팅막의 내부식성 특성에 관한 연구)

  • Wan, Zhixin;Lee, Woo-Jae;Jang, Kyung Su;Choi, Hyun-Jin;Kwon, Se Hun
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.339-344
    • /
    • 2017
  • Highly corrosion resistance performance of CrAlSiN coatings were obtained by applying ultrathin $Al_2O_3$ thin films using atomic layer deposition (ALD) method. CrAlSiN coatings were prepared on Cr adhesion layer/SUS304 substrates by a hybrid coating system of arc ion plating and high power impulse magnetron sputtering (HiPIMS) method. And, ultrathin $Al_2O_3$ passivation layer was deposited on the CrAlSiN/Cr adhesion layer/SUS304 sample to protect CrAlSiN coatings by encapsulating the whole surface defects of coating using ALD. Here, the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray spectrometry (EDX) analysis revealed that the ALD $Al_2O_3$ thin films uniformly covered the inner and outer surface of CrAlSiN coatings. Also, the potentiodynamic and potentiostatic polarization test revealed that the corrosion protection properties of CrAlSiN coatings/Cr/SUS304 sample was greatly improved by ALD encapsulation with 50 nm-thick $Al_2O_3$ thin films, which implies that ALD-$Al_2O_3$ passivation layer can be used as an effect barrier layer of corrosion.

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

Experimental Study of N2O Plasma Igniter for PMMA Combustion (N2O 플라즈마 점화 하이브리드 로켓에 대한 실험적 연구)

  • Kim, Myoungjin;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, Arc plasma was employed for the thermal decomposition of nitrous oxide($N_2O$). Conventional ignition systems such as torch, spark, and catalyst systems, have disadvantages in that they are not reliable and do not provide rapid responses. Therefore, this study suggests the plasma application of plasma to overcome the problems of conventional ignition methods. A gas temperature and combustion experiment was carried out to investigate the feasibility to a novel igniter. The gas temperature was measured around $960^{\circ}C$ at 1 g/s, 0.7 A at the nearest wall. In addition, a combustion test was successfully conducted in 3.1 sec after the plasma discharge was initiated with a main flow rate of 10 g/s. The energy consumption for ignition was 1,780 J(574 W).

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T.;Ramesh, S.;Tan, Caiwang;Zhang, Zequn;Zhao, Xiaoye;Manladan, S.M.
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.47-73
    • /
    • 2019
  • Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.

Implementation of Road Risk Information Notice Device (도로위험정보알림 디바이스 구현)

  • Kim, Jong-Duk;Han, Seung-Heon;Kim, Yong-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.438-444
    • /
    • 2019
  • With the increasing supply of vehicles, construction of new roads and expansion of existing roads are growing and this is leading to a proportional rise in diverse hazards on a road. These hazards are classified into fixed hazards and variable hazards. Currently, drivers receive information of fixed hazards, such as overspeed, frequent accidents, and rock fall through navigations. However, variable hazards are more hazardous than fixed hazards. Map companies frequently enter information of variable hazards manually, but it is less real-time and hard to deal with unforseen hazards. This paper is intended to implement a road hazard warning system for making a contribution to pubic interests by improving this problem and delivering real-time information of hazards to drivers, and suggest a direction for using information of hazards on a road.