• Title/Summary/Keyword: Hybrid Electric vehicle

Search Result 437, Processing Time 0.025 seconds

A Bi-directional DC-DC Converter for Fuel Cell-Battery Hybrid Electric Power Systems (연료전지-배터리 하이브리드 전력시스템용 양방향 DC-DC 컨버터)

  • Lee, Ki-Ho;Kim, Jong-Soo;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.264-265
    • /
    • 2007
  • 본 논문에서는 하이브리드 전기 자동차(Hybrid Electric Vehicle, HEV)의 실제 주행패턴 데이터를 기준으로 하이브리드 전력 시스템용 양방향 DC-DC 컨버터를 설계하고, 시뮬레이터를 구성한다. HEV의 주행패턴 데이터 중 가 감속 구간 일부를 선택하여 전기적 부하 변화로 모델링하고, 이를 통해 양방향 DC-DC 컨버터의 모드별 동작을 시뮬레이션 한다.

  • PDF

Development of the Bidirectinal DC-DC Converter Control Algorithm for Hybrid Electric Vehicles (하이브리드 전기자동차용 양방향 DC-DC Converter제어 알고리즘 개발)

  • Oh Doo-Yong;Gu Bon-Gwan;Nam Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.346-349
    • /
    • 2004
  • The design of DC-DC converters for power electronic interfaces in power management systems for Hybrid Electric Vehicle (HEV) is a very challenging task. In this paper, the considered topology is the hi-directional buck-boost converter and inverter system. If we make the converter side DC link current the same as the inverter side DC link current in a converter-inverter system, no current will flow through the BC link capacitor and as a result, no DC link voltage variation occurs. This leads to the possibility of reducing small th size of DC link capacitors which are expensive, bulky. Therefore we propose the converter current controller which can manage to match inverter and converter current at the DC link.

  • PDF

Power Conversion Unit for Hybrid Electric Vehicles (하이브리드 전기자동차 구동용 전력변환장치)

  • Lee, Ji-Myoung;Lee, Jae-Yong;Park, Rae-Kwan;Chang, Seo-Geon;Choi, Kyung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.7-11
    • /
    • 2008
  • This paper describes design procedure and control strategy of HDC(High side DC/DC Converter) and MCU(Motor Control Unit) for diesel hybrid electric vehicle. In designing HDC and MCU for HEV high power density and reliability is strongly needed to meet the demand of automotive industry. In order to achieve the high performance of a controller, MPC5554 based control board is developed. An optimized film capacitor and inductor are also developed for high efficiency driving. Skim 63 IGBT module of SEMIKRON for automotive is used for power switching device. The most efficient cooling model for optimal size and reliability were verified by simulation. These procedures are verified by bench or driving test and the results are present in this paper.

  • PDF

Comparative Study of Control Strategies for a Parallel Mild Hybrid Electric Vehicle (병렬형 마일드 하이브리드 차량에 대한 운전전략 비교연구)

  • Ki, Young-Hun;You, Chun-Young;Moon, Chan-Woo;Jeong, Gu-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.241-242
    • /
    • 2007
  • 병렬형 마일드 HEV(Hybrid Electric Vehicles)는 동력변환과정이 적어 구동계 전체의 효율이 직렬형에 비해 우수하고 다양한 구조를 가질 수 있으며 기존차량에 적용하기 쉽다는 장점이 있으나 구조 및 제어가 복잡하다. 따라서 병렬형 마일드 HEV의 성능을 예측하고 적절한 제어기를 설계하기 위해서는 구성요소의 종류 및 규격과 제어전략에 따른 HEV의 성능을 해석할 수 있는 체계적인 방법이 필요하다. 따라서 본 논문에서는 Simulink 소프트웨어를 이용한 모듈화 모델링에 의하여 병렬형 HEV의 구성요소를 모델링하고 이로부터 병렬형 HEV의 성능해석 및 운전제어전략의 특성을 비교할 수 있도록 한다.

  • PDF

The Analysis of a Electric Scooter's Performance through Motor and Battery Capacity Changing (모터 및 배터리 용량에 따른 전기스쿠터 성능해석)

  • Kil, Bum-Soo;Kim, Gang-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.7-13
    • /
    • 2011
  • The climate change due to the increased consumption with fossil fuel and rise of the oil price have been serious global issues. Automobile industry consumes 30% of the oil every year and causes air pollution and global warming by the exhaust emissions and carbon dioxide ($CO_2$). The demand of two-wheeled vehicle increases every year due to the parking and traffic problem caused by the increased automobiles in the urban area. Approximately 50,000,000 two-wheeled vehicles were produced in 2008. The development and sales of the hybrid two-wheeled vehicle industry become active due to its increased market demands. In this paper, the change of the motor and battery efficiency, driving distance, hill climbing ability with the change of the motor capacity was analyzed. Simulation of the peculiarities in urban driving schedule(World-wide Motorcycle Test Cycle(WMTC), Manhattan driving schedule), constant speed(10 km/h, 35 km/h) of small electronic two-wheeled vehicle was also carried out. Through the simulation result, appropriate capacities of the motor and battery for urban driving was acquired.

A 10kW Hybrid Converter for the Electric Vehicle Charge Application (전기자동차 충전기용 10kW 하이브리드 컨버터)

  • Tran, Dai-Duong;Yu, Sun-Ho;Vu, Hai-Nam;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.319-320
    • /
    • 2015
  • A hybrid converter for the on-board charger consisting of a soft switching full bridge (SSFB) and a half bridge (HB) LLC resonant converter is proposed. The proposed topology adopts an additional switch and a diode at the secondary side of SSFB converter to guarantee the wide ZVS range of primary side switches and to eliminate the circulating current. The output voltage is regulated by controlling the duty cycle of secondary side switch. The effectiveness of the proposed converter was experimentally verified using a 10-kW prototype circuit. The experimental results show 96.8% peak efficiency.

  • PDF

Effect of Coolant Flow Characteristics in Cooling Plates on the Performance of HEV/EV Battery Cooling Systems (하이브리드/전기 자동차 배터리 냉각 시스템의 냉각수 유동 특성이 냉각 성능에 미치는 영향에 대한 해석적 연구)

  • Oh, Hyunjong;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.179-185
    • /
    • 2014
  • Average temperature and temperature uniformity in a battery cell are the important criteria of the thermal management of the battery pack for hybrid electric vehicles and electric vehicles (HEVs and EVs) because high power with large size cell is used for the battery pack. Thus, liquid cooling system is generally applied for the HEV/EV battery pack. The liquid cooling system is made of multiple cooling plates with coolant flow paths. The cooling plates are inserted between the battery cells to reject the heat from batteries to coolant. In this study, the cooling plate with U-shaped coolant flow paths is considered to evaluate the effects of coolant flow condition on the cooling performance of the system. The counter flow and parallel flow set up is compared and the effect of flow rate is evaluated using CFD tool (FLUENT). The number of counter-flows and flow rate are changed and the effect on the cooling performance including average temperature, differential temperature, and standard deviation of temperature are investigated. The results show that the parallel flow has better cooling performance compared with counter flow and it is also found that the coolant flow rate should be chosen with the consideration of trade-off between the cooling performance and pressure drop.

Numerical Analysis of Electromagnetic Characteristic of High Voltage/Current Cable for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블의 전자파 특성 수치해석에 관한 연구)

  • Lee, Soon-Yong;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2010
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) is essential. BOP systems are used many not only for motors in water pump, air blower, and hydrogen recycling pump but also inverters for these motors. Since these systems or components are connected by high voltage cables, EMC (Electromagnetic compatibility) analysis for high voltage/current cable is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields of high current/voltage cable for FCEVs is studied. From numerical analysis results, time harmonic magnetic field strength of high current/voltage cable have difference of 20~28 dB according to phase. EMI result considered ground effect of FECV at 10 m shows difference of 14.5 dB at 30 MHz and 2.8 dB at 230 MHz compared with general cable.

Design of a LDC Recycling Load Tester for Hybrid and Electric Vehicles (하이브리드 및 전기 자동차용 LDC 재생형 부하 시험기 설계)

  • Lee, Choon-Il;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6258-6263
    • /
    • 2014
  • The LDC (Low Voltage DC-DC Converter) used for hybrid vehicles and electric vehicles was utilized to supply the electric apparatus load with a voltage and to charge the auxiliary batteries by receiving a high DC voltage from the high voltage battery. The LDC has a long-time load test during the manufacturing process. On the other hand, it has the disadvantage of considerable energy consumption because it has the structure to release the power as 100% heat during a load test. Therefore, in this paper, a recycling load test method was proposed and 75~90% energy saving was realized.

Design of Drive System for Electric Vehicle (전기자동차 구동시스템 설계)

  • 오진석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.465-470
    • /
    • 1999
  • This paper presents a design method of driving system for EV(Electric Vehicle). EV driving system consist of batteries, battery interface system and inverter. The power control circuit of the driving system is simple, since only one PWM(Pulse Width Modulation) inverter is used. These test spectrums and waveforms can be used to determine the filter component ratings as well as to compute the harmonics injected into the source. The hybrid control strategy which can reduced harmonic components. The analysis results indicate that the required capacity of the condenser can be reduced with LC filter. In this paper, the design and implementation of the proposed systems are described and some experimental results are given to show the performance of this driving system. The control strategy of the system to available inverter's power and motor's power and torque is discussed.

  • PDF