최근 얼굴 표정 인식에 있어 영상 기반의 방법의 하나로서 ULBP 블록 히스토그램 피쳐와 SVM을 분류기로 사용한 연구가 수행되었다. Ojala 등에 의해 소개된 LBP는 높은 식별력과 조명의 변화에 대한 내구성과 간단한 연산 때문에 영상 인식 분야에 많이 사용되고 있다. 본 논문에서는 ULBP 블록 히스토그램을 계산함에 있어 분할 영역의 이동, 크기 변화에 더하여 미세한 특징 요소를 표현할 수 있도록 $LBP_{8,2}$과 $LBP_{8,1}$를 결합하였다. $LBP_{8,1}$ 660개, $LBP_{8,2}$ 550개의 분할 창으로부터 1210개의 ULBP 히스토그램 피쳐를 추출하고 이로부터 AdaBoost를 이용하여 50개의 약 분류기를 생성하였다. $LBP_{8,1}$와 $LBP_{8,2}$가 결합된 하이브리드 형태의 ULBP 블록 히스토그램 피쳐와 SVM 분류기를 이용함으로써 표정 인식률을 향상시킬 수 있었으며 다양한 실험을 통하여 이를 확인하였다. 본 논문에서 제안한 하이브리드 Boosted ULBP 히스토그램의 경우에 표정의 인식률이 96.3%로 가장 높은 결과를 보였으며 제안한 방법의 우수성을 확인하였다.
최근 인터넷 사용자의 증가와 서비스의 다양화 그리고 이에 따른 고속 인터넷 엑세스 기술의 도입으로 인터넷 트래픽의 급격한 증가를 초래하고 있다. 이러한 이유로 인터넷 패킷 전달에 2계층 스위칭 기술과 3계층 라우팅 기술을 접목한 IP/ATM Hybrid system이 등장하게 되었다. 이러한 시스템에서의 중요한 자원은 2계층 스위칭 기술을 사용하기 위한 유한한 VCI/VPI 공간이다. 이 VCI/VPI 공간을 효과적으로 관리하기 위한 방안으로 많은 방안들이 제시되고 있다. 특히 흐름 기반의 IP/ATM Hybrid system에서의 흐름 분류기를 사용함으로서 VCI/CPI 공간을 관리하고 있다. 본 논문에서 주장하는 적응형X/Y 분류기가 유한한 VCI/VPI 공간을 효율적으로 관리하기 위한 방안임을 제시하고 이에 대하여 실험을 통하여 성능 평가를 실시하였다 특히 동일한 VCI/VPI 공간에서 X/Y분류기와의 비교실험에서 적응형 X/Y 분류기의 성능이 높은 스위칭 율로 나타나고 있다. 즉 적응형 X/Y 분류기가 X/Y분류기에 비하여 효율적으로 VCI/VPI를 관리함을 보이고 있다
International Journal of Computer Science & Network Security
/
제22권5호
/
pp.348-358
/
2022
Software fault prediction is a method to compute fault in the software sections using software properties which helps to evaluate the quality of software in terms of cost and effort. Recently, several software fault detection techniques have been proposed to classifying faulty or non-faulty. However, for such a person, and most studies have shown the power of predictive errors in their own databases, the performance of the software is not consistent. In this paper, we propose a hybrid soft computing technique for SFP based on optimal feature extraction and classification (HST-SFP). First, we introduce the bat induced butterfly optimization (BBO) algorithm for optimal feature selection among multiple features which compute the most optimal features and remove unnecessary features. Second, we develop a layered recurrent neural network (L-RNN) based classifier for predict the software faults based on their features which enhance the detection accuracy. Finally, the proposed HST-SFP technique has the more effectiveness in some sophisticated technical terms that outperform databases of probability of detection, accuracy, probability of false alarms, precision, ROC, F measure and AUC.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권3호
/
pp.704-719
/
2024
Botnet pandemics are becoming more prevalent with the growing use of mobile phone technologies. Mobile phone technologies provide a wide range of applications, including entertainment, commerce, education, and finance. In addition, botnet refers to the collection of compromised devices managed by a botmaster and engaging with each other via a command server to initiate an attack including phishing email, ad-click fraud, blockchain, and much more. As the number of botnet attacks rises, detecting harmful activities is becoming more challenging in handheld devices. Therefore, it is crucial to evaluate mobile botnet assaults to find the security vulnerabilities that occur through coordinated command servers causing major financial and ethical harm. For this purpose, we propose a hybrid analysis approach that integrates permissions and API and experiments on the machine-learning classifiers to detect mobile botnet applications. In this paper, the experiment employed benign, botnet, and malware applications for validation of the performance and accuracy of classifiers. The results conclude that a classifier model based on a simple decision tree obtained 99% accuracy with a low 0.003 false-positive rate than other machine learning classifiers for botnet applications detection. As an outcome of this paper, a hybrid approach enhances the accuracy of mobile botnet detection as compared to static and dynamic features when both are taken separately.
Park, Eun-Jin;Kwon, Oh-Woog;Kim, Kangil;Kim, Young-Kil
ETRI Journal
/
제37권3호
/
pp.541-550
/
2015
In this paper, we propose a classification-based approach for hybridizing statistical machine translation and rulebased machine translation. Both the training dataset used in the learning of our proposed classifier and our feature extraction method affect the hybridization quality. To create one such training dataset, a previous approach used auto-evaluation metrics to determine from a set of component machine translation (MT) systems which gave the more accurate translation (by a comparative method). Once this had been determined, the most accurate translation was then labelled in such a way so as to indicate the MT system from which it came. In this previous approach, when the metric evaluation scores were low, there existed a high level of uncertainty as to which of the component MT systems was actually producing the better translation. To relax such uncertainty or error in classification, we propose an alternative approach to such labeling; that is, a cut-off method. In our experiments, using the aforementioned cut-off method in our proposed classifier, we managed to achieve a translation accuracy of 81.5% - a 5.0% improvement over existing methods.
User's selection of music is largely influenced by private tastes as well as emotional states, and it is the unconsciousness projection of user's emotion. Therefore, we think user's emotional states to be music itself. In this paper, we try to grasp user's emotional states from music selected by users at a specific context, and we analyze the correlation between its context and user's emotional state. To get emotional states out of music, the proposed method extracts emotional words as the representative of music from lyrics of user-selected music through morphological analysis, and learns weights of linear classifier for each emotional features of extracted words. Regularities learned by classifier are utilized to calculate predictive weights of virtual music using weights of music chosen by other users in context similar to active user's context. Finally, we propose a method to recommend some pieces of music relative to user's contexts and emotional states. Experimental results shows that the proposed method is more accurate than the traditional collaborative filtering method.
Sales forecasting is crucial for many retail operations. For apparel retailers, accurate sales forecast for the next season is critical to properly manage inventory and plan their supply chains. The challenge in this increases because apparel products are always new for the next season, have numerous variations, short life cycles, long lead times, and seasonal trends. In this study, a sales forecasting model is proposed for apparel products using machine learning techniques. The sales data pertaining to outerwear items for four years were collected from a Korean sports brand and filtered with outliers. Subsequently, the data were standardized by removing the effects of exogenous variables. The sales patterns of outerwear items were clustered by applying K-means clustering, and outerwear attributes associated with the specific sales-pattern type were determined by using a decision tree classifier. Six types of sales pattern clusters were derived and classified using a hybrid model of clustering and decision tree algorithm, and finally, the relationship between outerwear attributes and sales patterns was revealed. Each sales pattern can be used to predict stock-keeping-unit-level sales based on item attributes.
집중은 관련된 사건을 선택적으로 주의하고, 관련 없는 사건을 무시하는 인간의 중요한 인지 기능중의 하나이다. 인간의 집중 능력을 관리 이용하는 컴퓨터 기반 장치에 있어서 집중과 비집중 상태를 구분하는 것은 필수적으로 요구되는 조건이다. 본 논문에서는, 뇌파신호로부터 분류기의 입력으로 사용되는 특징을 효율적으로 추출하기 위하여 비선형 반복 패턴 분석기법과 스펙트럼 분석 기법을 새로이 결합하였고(13개 특징 추출), 서포트벡터머신, 역전파 알고리즘, 선형분리, 로지스틱 회귀 분류 기반 분류기들을 포함하는 집중-비집중 분류기들의 성능을 분석하였다. 그중에서 81 %의 정확도를 보이는 서포트벡터머신 분류기가 가장 좋은 성능을 보였다. 또한 스펙트럼 분석으로 추출한 특징만을 사용하였을 경우(76 % 정확도)가 비선형 분석 방법으로 추출한 특징만을 사용했을 경우(67 % 정확도)보다 좀 더 우수한 성능을 보였다. 비선형-스펙트럼 분석법을 복합 적용한 서포트벡터머신 분류기가 추후 집중 관련 장비 설계에 있어서 효율적으로 적용될 수 있을 것이다.
본 논문은 다중경로 페이딩 채널 조건에서 사전 정보없이 입사하는 디지털 신호 10종의 변조형태를 고정확도로 인식할 수 있도록 고차 통계량(HOS)과 웨이브릿 변환(WT)에서 선정된 특징(key features)을 이용한 견실한 하이브리드 분류기를 제안하였다. 제안된 분류기는 실제 시나리오를 고려하여 다양한 다중경로 환경(즉, 농촌, 소도시, 도심지역)에서 측정된 채널 데이터를 이용하였다. 실제 측정된 다중경로 페이딩 채널 데이터를 이용하여 Holdout-like 방식으로 총 15개 채널 중 9개 채널은 트레이닝용으로 사용하고, 나머지 6개 채널은 테스트용으로 사용하였다. 제안된 분류기는 다중경로 환경에서 높은 변별력을 유지하는 HOS 특징을 기반으로 구현되었고, AMA(Alphabet Matched Algorithm) 또는 MMA(Multi-modulus Algerian)와 같은 등화기법의 적용없이 분류가 어렵다고 알려진 MQAM신호(M=16, 64, 256)들에 대해서만 WT 특징을 적용하였다. 선정된 특징들을 이용한 변조인식은 입력공간에서 최대 마진을 갖는 하이퍼 공간으로 매핑시킴으로서 분류 능력이 우수하다고 알려진 SVM 메소드를 적용하여 시뮬레이션을 실시하였다. 제안된 분류기의 성능은 트레이닝 채널과 테스트 채널에서 WT 또는 HOS 특징만을 단독으로 사용하는 분류기에 비해 현저한 성능 향상을 보였고, 특히, MQAM 신호의 인식률은 낮은 SNR레벨에서도 거의 완전하게 분류되었다.
본 논문은 복잡한 컬러 영상에서의 문자 추출을 위한 텍스춰와 연결성분 방법의 결합된 방법을 제안한다. 자동 학습 방법으로 구축된 다층 신경망(multilayer perceptron)은 부트스트랩 학습 방법을 사용함으로써 별도의 특징값 추출 단계 없이 다양한 환경의 입력 영상에 대한 검출률(recall rate)을 향상시키며, 검출률을 향상함으로써 발생되는 정확도(precision rate) 저하 문제는, NMF(Non-negative matrix factorization)를 이용한 연결 성분 방법을 사용함으로써 극복한다. 문자의 존재 비율이 낮은 입력영상에 대하여 CAMShift 알고리즘을 이용한 영역 마킹 방법을 사용함으로써, 두 방법을 결합함으로써 야기되는 속도 저하 문제의 해결을 시도하였다. 이와 같이 텍스춰와 연결성분 방법을 결합함으로써 강건하고 효율적인 시스템을 구성할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.