• 제목/요약/키워드: Hybrid Catalyst

검색결과 120건 처리시간 0.034초

Crystal Structure Dependence for Reactivities of B12-TiO2 Hybrid Catalysts with Anatase and Rutile Forms

  • Shimakoshi, Hisashi;Nagami, Yoko;Hisaeda, Yoshio
    • Rapid Communication in Photoscience
    • /
    • 제4권1호
    • /
    • pp.9-11
    • /
    • 2015
  • The debromination of phenethyl bromide by the $B_{12}-TiO_2$ hybrid catalyst under UV light irradiation was investigated. The catalytic efficiency was dependent on the type of $TiO_2$. The anatase form of $TiO_2$ was superior to the rutile form of $TiO_2$. The selectivity of the product was also dependent on the crystal structure of $TiO_2$, and the rutile form of $TiO_2$ showed a high selectivity for the formation of the coupling product, 2,3-diphenylbutane, when compared to that of the anatase form of $TiO_2$.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • 제6권1호
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

과산화수소 촉매 분해를 이용한 파라핀 및 PE 하이브리드 로켓의 자연 점화 특성 (Auto-ignition Characteristics of Paraffin and PE Hybrid Rocket with $H_2O_2$ Catalytic Decomposition)

  • 안성용;진정근;정은상;권세진
    • 한국추진공학회지
    • /
    • 제13권5호
    • /
    • pp.48-56
    • /
    • 2009
  • 고농도 과산화수소를 산화제로 이용하는 하이브리드 로켓의 자연 점화 연구를 수행하였다. 별도의 점화기 없이 촉매 반응을 통한 과산화수소 분해가스를 파라핀 및 폴리에틸렌에 분사함으로서 점화를 하였고 연속적인 재점화 및 즉각적인 점화 특성을 확인하였다. 안정적인 연소를 위해 파라핀은 PE에 비해 높은 연소실 특성길이가 요구된 반면, 펄스 응답특성은 점화지연 13 ms, 상승시간 30 ms 로서 폴리에틸렌의 응답성에 비해 두 배 가량 빠른 특성을 보였다.

과산화수소 촉매 분해를 이용한 하이브리드 로켓 자연 점화 (Auto-ignition Characteristics of Paraffin and PE Hybrid Rocket with $H_2O_2$ Catalytic Decomposition)

  • 안성용;진정근;정은상;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.499-502
    • /
    • 2009
  • 고농도 과산화수소를 산화제로 이용하는 하이브리드 로켓의 자연 점화 연구를 수행하였다. 별도의 점화기 없이 촉매 반응을 통한 과산화수소 분해가스를 파라핀 및 폴리에틸렌에 분사함으로서 점화를 하였고 연속적인 재점화 및 즉각적인 점화 특성을 확인하였다. 안정적인 연소를 위해 파라핀은 PE에 비해 높은 연소실 특성길이가 요구된 반면, 펄스 응답특성은 점화지연 13 ms, 상승시간 30 ms 로서 폴리에틸렌의 응답성에 비해 두 배 가량 빠른 특성을 보였다.

  • PDF

하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구 (Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor)

  • 황철홍;정영식;이창언
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.583-592
    • /
    • 2001
  • The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of N$_2$O was more dominant than that of NO due to the relative importance of the reaction N$_2$+O(+M)→N$_2$O(+M). Finally the productions of CO and NOx by amount of methane addition were studied.

Free-standing Three Dimensional Graphene Incorporated with Gold Nanoparticles as Novel Binder-free Electrochemical Sensor for Enhanced Glucose Detection

  • Bui, Quoc Bao;Nguyen, Dang Mao;Nguyen, Thi Mai Loan;Lee, Ku Kwac;Kim, Hong Gun;Ko, Sang Cheol;Jeong, Hun
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.229-237
    • /
    • 2018
  • The electrochemical sensing performance of metal-graphene hybrid based sensor may be significantly decreased due to the dissolution and aggregation of metal catalyst during operation. For the first time, we developed a novel large-area high quality three dimensional graphene foam-incorporated gold nanoparticles (3D-GF@Au) via chemical vapor deposition method and employed as free-standing electrocatalysis for non-enzymatic electrochemical glucose detection. 3D-GF@Au based sensor is capable to detect glucose with a wide linear detection range of $2.5{\mu}M$ to 11.6 mM, remarkable low detection limit of $1{\mu}M$, high selectivity, and good stability. This was resulted from enhanced electrochemical active sites and charge transfer possibility due to the stable and uniform distribution of Au NPs along with the enhanced interactions between Au and GF. The obtained results indicated that 3D-GF@Au hybrid can be expected as a high quality candidate for non-enzymatic glucose sensor application.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

지하수 오염물질 처리를 위한 Full Scale PUV/US Hybrid System 연구 (A Study of Full Scale PUV/US Hybrid System for Contaminant Treatment in Groundwater)

  • 한종훈;박원석;이종렬;허지용;허남국
    • 대한환경공학회지
    • /
    • 제39권10호
    • /
    • pp.575-580
    • /
    • 2017
  • 전 세계적으로 지하수에서 TCE, PCE, BTEX, PAH, TPH, TNT, RDX, HMX가 지속적으로 검출되고 있다. 이러한 오염물질들은 기존의 물리화학적 방법으로 제거시에는 한계가 있으며, 신속한 정화를 요구하는 현장에 적용하기에는 많은 어려움이 있는 실정이다. 이에 본 연구에서는 난분해성 오염물질의 제거를 위해 PUV와 US를 연계하여 적용하고자 하였다. 각 공정은 고 에너지를 주입하는 PUV 공정과 라디칼 생산을 통해 오염물을 제거하는 US 공정의 특징을 이용하였으며, 제거율 향상을 위한 촉매주입도 함께 고려하였다. 연구 결과 PUV-US 하이브리드 시스템의 상승효과는 TCE, PCE, BTEX, TNT, RDX, HMX를 처리하는데는 90% 이상의 제거율을 나타내 적용 가능한, 효과적인 공정으로 판단되었으나 PAHs 제거를 위해서는 추가적인 공정 개선이 필요한 것으로 나타났다.