• 제목/요약/키워드: Hybrid Bearing

검색결과 170건 처리시간 0.027초

유체의 관성력과 스월의 영향을 고려한 난류 하이브리드 베어링의 해석 (An Analysis for Turbulent Hybrid Bearings with Fluid Inertia and Swirl Injection Effects)

  • 이용복;김창호;최동훈
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.85-91
    • /
    • 1996
  • An analysis for turbulent hybrid beatings with fluid inertia and swirl injection effect was derived for studying static characteristics of swirl-controlled hybrid journal. The swirl-controlled hybrid journal beating is considered to have more freedom in stability control in high speed rotating machinery. Current analysis is compared with experimental results with 3-recess hydrostatic journal bearing. The analysis revealed that the fluid momentum exchange at orifice discharge could produce pressure rise inside the recess region which can control the shear flow induced by journal rotation. The analysis also shows that the swirl-controlled hybrid journal beating has a capability of controlling load carrying capacity and stability by manipulating supply pressure and injection angle.

억지끼워맞춤을 이용한 하이브리드 복합재료 저널베어링의 설계 (Design of the Hybrid Composite proceeding Bearing Assembled by Interference Fit)

  • 김성수;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.219-223
    • /
    • 2005
  • In this work, a hybrid composite proceeding bearing (HCJB) composed of carbon/phenolic laminated composite bush and steel housing was designed for marine vessels because the composite proceeding bearing reduces the possibility of the seizure problem between the proceeding and bearing. The two components of bearing were assembled by interference fit joining method and a series of durability tests were conducted using the laboratory bench with the lubricants of SAE 30 oil, water, and sea water. That the HCJB was found reliable under the interference fitting loads and environmental temperature change.

  • PDF

원심모형실험을 활용한 점토지반에 설치된 하이브리드 석션 버켓기초의 수평방향 지지력 평가 (Bearing Capacity Evaluation of Hybrid Suction Bucket Foundations on Clay Under Horizontal Loads Using a Centrifuge)

  • 김재현;이철주;신희정;김성환;구정민;정충열;전영진
    • 한국지반공학회논문집
    • /
    • 제39권12호
    • /
    • pp.61-73
    • /
    • 2023
  • 석션 버켓(suction bucket)은 해양 구조물 지지를 위해 사용되는 기초구조물 중 하나로 펌프를 이용해 빠르게 기초 시공이 가능한 장점이 있다. 최근 기초 지지력을 효과적으로 증가시키고 건설 비용을 절감하기 위해 단일 석션 버켓이나 다수의 석션 버켓이 매트기초와 결합된 하이브리드 석션 버켓기초(hybrid suction bucket foundation)가 제안되었다. 하지만 현재까지 수중구조물과 같이 작은 수직하중(자중)과 모멘트 하중 조건에서 수평하중에 대한 하이브리드 석션 버켓기초의 저항 메커니즘과 지지력에 관한 실험적 연구가 부족한 실정이다. 따라서, 본 연구에서는 점토지반에 설치된 하이브리드 석션 버켓기초의 수평방향 저항 메커니즘과 지지력을 평가하기 위해 하중재하시스템을 구축하고 원심모형실험을 수행하였다. 본 연구에서는 원형매트와 단일 버켓이 결합된 하이브리드 석션 버켓기초와 사각형 매트와 4개의 버켓기초가 결합된 하이브리드 그룹 석션 버켓기초를 대상으로 하였다. 본 연구를 통해 매트기초와 석션 버켓기초의 스커트(skirt) 길이가 수평방향 지지력 증진에 미치는 영향을 실험적으로 평가하였다. 그 결과, 작은 수직하중과 모멘트 하중조건에서 하이브리드 석션 버켓기초의 매트와 버켓기초 스커트가 기초의 수평방향 지지력 증진에 효과가 있음을 확인하였다.

최적화기법에 의한 베어링 동특성 계수의 규명 (Identification of Bearing Dynamic Coefficients Using Optimization Techniques)

  • 김용한;양보석;안영공;김영찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.520-525
    • /
    • 2003
  • The determination of unknown parameters in rotating machinery is a difficult task and optimization techniques represent an alternative technique for parameter identification. The Simulated Annealing(SA) and Genetic Algorithm(GA) are powerful global optimization algorithm. This paper proposes new hybrid algorithm which combined GA with SA and local search algorithm for the purpose of parameter identification. Numerical examples are also presented to verify the efficiency of proposed algorithm. And, this paper presents the general methodology based on hybrid algorithm to identify unknown bearing parameters of flexible rotors using measured unbalance responses. Numerical examples are used to ilustrate the methodology used, which is then validated experimentally.

  • PDF

Stiffness of hybrid systems with and without pre-stressing

  • Miljanovic, Sladana;Zlatar, Muhamed
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.147-161
    • /
    • 2020
  • Constructive merging of "basic" systems of different behavior creates hybrid systems. In doing so, the structural elements are grouped according to the behavior in carrying the load into a geometric order that provides sufficient load and structure functionality and optimization of the material consumption. Applicable in all materializations and logical geometric forms is a transparent system suitable for the optimization of load-bearing structures. Research by individual authors gave insight into suitable system constellations from the aspect of load capacity and the approximatemethod of estimating the participation of partialstiffnesswithin the rigidity ofthe hybrid system. The obtained terms will continue to be the basisfor our own research of the influence of variable parameters on the behavior of hybrid systemsformed of glued laminated girder and cable of different geometric shapes. Previous research has shown that by applying the strut-type hybrid systems can increase the load capacity and reduce the deformability ofthe free girder.The implemented parametric analysis pointsto the basic parameterin the behavior of these systems-the rigidity ofindividual elements and the overallstiffnessofthe system.The basic idea ofpre-stressing is that, in the load system or individual load-bearing element, prior to application of the exploitation load, artificially challenge the forcesthatshould optimize the finalsystembehaviorin the overall load. Pre-stressing is possible only if the supporting system orsystem's element possesssufficientstrength orstiffness, orreaction to the imposed forces of pre-stressing. In this paper will be presented own research of the relationship of partial stiffness of strut-type hybrid systemsofdifferentgeometric forms.Conducted parametric analysisofhybridsystemswithandwithoutpre-stressing, and on the example of the glulam-steel strut-type hybrid system under realistic conditions of change in the moisture content ofthe wooden girder,resulted in accurate expressions and diagramssuitable for application in practice.

새로운 하이브리드 극 구조의 베어링리스 SRM 설계 및 운전특성 (A Design and Driving Characteristics of Novel Hybrid Pole Bearingless SRM)

  • 이동희;왕혜군;안영주;안진우
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2202-2207
    • /
    • 2008
  • Bearingless SRM(Switched Reluctance Motor) is researched for high speed or special applications which can not use mechanical bearing such as bio pump. In this paper, a novel hybrid pole bearingless SRM is presented. The proposed hybrid pole bearingless SRM has salient poles for torque and suspending force production. Motor torque is controlled by the phase currents in torque pole windings, and the suspending force is controlled by suspending currents in four suspending windings for radial direction suspension. Because the proposed bearingless SRM has divided pole structure, mutual effects between torque current and suspending current are very lower than the conventional one's. From this structure, the number of power devices for power converter can be reduced for bearingless SRM driving. The proposed hybrid pole bearing less SRM is verified by the FEM analysis and experimental results.

A hybrid approach to predict the bearing capacity of a square footing on a sand layer overlying clay

  • Erdal Uncuoglu;Levent Latifoglu;Zulkuf Kaya
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.561-575
    • /
    • 2023
  • This study investigates to provide a fast solution to the problem of bearing capacity in layered soils with easily obtainable parameters that does not require the use of any charts or calculations of different parameters. Therefore, a hybrid approach including both the finite element (FE) method and machine learning technique have been applied. Firstly, a FE model has been generated which is validated by the results of in-situ loading tests. Then, a total of 192 three-dimensional FE analyses have been performed. A data set has been created utilizing the soil properties, footing sizes, layered conditions used in the FE analyses and the ultimate bearing capacity values obtained from the FE analyses to be used in multigene genetic programming (MGGP). Problem has been modeled with five input and one output parameter to propose a bearing capacity formula. Ultimate bearing capacity values estimated from the proposed formula using data set consisting of 20 data independent of total data set used in MGGP modelling have been compared to the bearing capacities calculated with semi-empirical methods. It was observed that the MGGP method yielded successful results for the problem considered. The proposed formula provides reasonable predictions and efficient enough to be used in practice.

Flexural performance of prestressed UHPC beams with different prestressing degrees and levels

  • Zongcai Deng;Qian Li;Rabin Tuladhar;Feng Shi
    • Computers and Concrete
    • /
    • 제34권4호
    • /
    • pp.379-391
    • /
    • 2024
  • The ultra-high performance concrete (UHPC) mixed with hybrid fibers has excellent mechanical properties and durability, and the hybrid fibers have a certain impact on the bearing capacity, deformation capacity, and crack propagation of beams. Many scholars have conducted a series of studies on the bending performance of prestressed UHPC beams, but there are few studies on prestressed UHPC beams mixed with hybrid fibers. In this study, five bonded post-tensioned partially prestressed UHPC beams mixed with steel fibers and macro-polyolefin fibers were poured and subjected to four-points symmetric loading bending tests. The effects of different prestressing degrees and prestressing levels on the load-deflection curves, crack propagation, failure modes and ultimate bearing capacity of beams were discussed. The results showed that flexural failure occurred in the prestressed UHPC beams with hybrid fibers, and the integrity of specimens was good. When the prestressing degree was the same, the higher the prestressing level, the better the crack resistance capacity of UHPC beams; When the prestressing level was 90%, increasing the prestressing degree was beneficial to improve the crack resistance and ultimate bearing capacity of UHPC beams. When the prestressing degree increased from 0.41 to 0.59, the cracking load and ultimate load increased by 66.0% and 41.4%, respectively, but the ductility decreased by 61.2%. Based on the plane section assumption and considering the bridging effect of short fibers, the cracking moment and ultimate bearing moment were calculated, with good agreement between the test and calculated values.

하이브리드 복합재료 저널 베어링의 개발 (Development of the Hybrid Composite Journal Bearing)

  • 김성수;박동창;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.63-66
    • /
    • 2004
  • In this study, a hybrid composite journal bearing composed of carbon fiber reinforced phenolic composite liner and metal backing was manufactured to solve the seizure problem of metallic journal bearing materials because the carbon fiber has self-lubricating ability and the phenolic resin has thermal resistance characteristics. To estimate the wear resistance of carbon fiber phenolic composite, wear tests were performed at several pressures and velocities. The oil absorption characteristics, coefficient of thermal expansion, strength and stiffness of the composite were also tested. Using the measured stiffness values, the thermal residual stresses in the composite were calculated to check the reliability of the composite journal bearing.

  • PDF