• Title/Summary/Keyword: Hybrid Bearing

Search Result 170, Processing Time 0.026 seconds

Prediction of Hybrid fibre-added concrete strength using artificial neural networks

  • Demir, Ali
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.503-514
    • /
    • 2015
  • Fibre-added concretes are frequently used in large site applications such as slab and airports as well as in bearing system elements or prefabricated elements. It is very difficult to determine the mechanical properties of the fibre-added concretes by experimental methods in situ. The purpose of this study is to develop an artificial neural network (ANN) model in order to predict the compressive and bending strengths of hybrid fibre-added and non-added concretes. The strengths have been predicted by means of the data that has been obtained from destructive (DT) and non-destructive tests (NDT) on the samples. NDTs are ultrasonic pulse velocity (UPV) and Rebound Hammer Tests (RH). 105 pieces of cylinder samples with a dimension of $150{\times}300mm$, 105 pieces of bending samples with a dimension of $100{\times}100{\times}400mm$ have been manufactured. The first set has been manufactured without fibre addition, the second set with the addition of %0.5 polypropylene and %0.5 steel fibre in terms of volume, and the third set with the addition of %0.5 polypropylene, %1 steel fibre. The water/cement (w/c) ratio of samples parametrically varies between 0.3-0.9. The experimentally measured compressive and bending strengths have been compared with predicted results by use of ANN method.

Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers (다중거동 복합형 감쇠장치를 적용한 철골골조의 내진성능실험)

  • Roh, Ji Eun;Heo, Seok Jae;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effectiveness of a multi-action hybrid damper (MHD) composed of lead rubber bearing (LRB) and friction pad was verified in terms of seismic performance improvement of a frame structure. The LRB and the friction elements are connected in series, so the LRB governs the intial small deformation and the friction determines large deformation behavior. Cyclic loading tests were conducted by using a half scale steel frame structure with the MHD, and the results indicated that the structure became to have the stable trilinear hysteresis with large initial stiffness and first yielding due to the LRB, and the second yielding due to the friction. The MHD could significantly increase the energy dissipation capacity of the structure and the hysteresis curves obtained by tests were almost identical to the analytically estimated ones.

Synthesis, interfacial property, and application of new hybrid anion surfactant containing fluorocarbon and hydrocarbon chains

  • Kang, Eun-kyung;Sohn, Eun-Ho;Jung, Ga Young;Jung, Seon Hwa;Ha, Jong-Wook;Lee, Soo-Bok;Park, In Jun;Lee, Byung Min
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.72-79
    • /
    • 2018
  • Hybrid F2HX surfactants bearing a sulfate moiety and both hydrocarbon and fluorocarbon chains were prepared by the reaction of alkyl glycidyl ethers with fluoro-alcohol, and subsequent sulfation. The fluorocarbon number in F2HX was fixed at the shortest number possible (i.e., 2), while the hydrocarbon number (X) in the second chain was varied between 2, 4, 6, and 8. Their surface-active properties and emulsion stabilities were systematically estimated as a function of the X. Among them, F2H8 exhibited the optimal surfactant performance, which was comparable to previously reported surfactants and it was successfully applied in the emulsion polymerization of vinylidene fluoride.

Bending performance and calculation of reinforced beam with hybrid fiber and CaCO3 whisker

  • Li Li;Yapeng Qin;Mingli Cao;Junfeng Guan;Chaopeng Xie
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.197-206
    • /
    • 2023
  • In this paper, the bending performance of a MSFRHPC (containing steel fiber, polyvinyl alcohol (PVA) fiber, and CW)-reinforced beam was studied for the first time. Introducing a multiscale fiber system increased the first crack load (up to 150%), yield load (up to 50%), and peak load (up to 15%) of reinforced beams. The multiscale fiber system delays cracking of the reinforced beam, reduces crack width of the reinforced beam in normal use, and improves the durability of the beam. Considering yield load and peak load, the reinforcing effect of multiscale fiber on the high-reinforcement ratio beam (1.00%) is better than that on the low-reinforcement ratio beam (0.57%). Introducing fibers slowed the development of cracks in the reinforced beam under bending. With the added hybrid fiber, the deformation concentration of reinforced beams after yield was more significant with concentration in 1 or 2 cracks. A model for predicting the flexural capacity of MSFRHPC-reinforced beams was proposed, considering the action of multiscale hybrid fibers. This research is helpful for structure application of MSFRHPC-containing CW.

Numerical investigation on seismic behaviors of midrise special moment resistant frame retrofitted by timber-base bracings

  • Ainullah-Mirzazadah, Ainullah-Mirzazadah;Sabbagh-Yazdi, Saeed-Reza
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.83-100
    • /
    • 2022
  • Timber is one of the few natural, renewable building materials and glulam is a type of engineering wood product. In the present work, timber-based braces are applied for retrofitting midrise Special Moment Resisting Frame (SMRF) using two types of timber base braces (Timber base glulam, and hybrid Timber-Steel-BRB) as alternatives for retrofitting by traditional steel bracings. The improving effects of adding the bracings to the SMRF on seismic characteristics of the frame are evaluated using load-bearing capacity, energy dissipation, and story drifts of the frame. For evaluating the retrofitting effects on the seismic performance of SMRF, a five-story SMRF is considered unretofitted and retrofitted with steel-hollow structural section (HSS) brace, Glued Laminated Timber (Glulam) brace, and hybrid Timber-Steel BRB. Using OpenSees structural analyzer, the performance are investigated under pushover, cyclic, and incremental loading. Results showed that steel-HSS, timber base Glulam, and hybrid timber-steel BRB braces have more significant roles in energy dissipation, increasing stiffness, changing capacity curves, reducing inter-story drifts, and reducing the weight of the frames, compared by steel bracing. Results showed that Hybrid BRB counteract the negative post-yield stiffness, so their use is more beneficial on buildings where P-Delta effects are more critical. It is found that the repair costs of the buildings with hybrid BRB will be less due to lower residual drifts. As a result, timber steel-BRB has the best energy dissipation and seismic performance due to symmetrical and stable hysteresis curves of buckling restrained braces that can experience the same capacities in tension and compression.

Experimental and numerical investigation on low-velocity impact behaviour of thin hybrid carbon/aramid composite

  • Sojan Andrews Zachariah;Dayananda Pai K;Padmaraj N H;Satish Shenoy Baloor
    • Advances in materials Research
    • /
    • v.13 no.5
    • /
    • pp.391-416
    • /
    • 2024
  • Hybrid composite materials are widely used in various load-bearing structural components of micro - mini UAVs. However, the design of thin laminates for better impact resistance remains a challenge, despite the strong demand for lightweight structures. This work aims to assess the low-velocity impact (LVI) behaviour of thin quasi-isotropic woven carbon/ aramid epoxy hybrid laminates using experimental and numerical techniques. Drop tower impact test with 10 J and 15 J impact energies is performed on carbon/epoxy laminates having aramid layers at different sequences and locations. The impact behaviour is experimentally evaluated using force-time, force-deformation, and energy-time histories considering delamination threshold load, peak load, and laminate deflection. Ultrasonic C-scan is performed on the post-impact samples to analyse the insidious damage profile at different impact energies. The experimental data is further utilized to numerically simulate LVI behaviour by employing the representative volume element model. The numerical results are in good agreement with the experimental data. Numerical and experimental approach predicts that the hybrid laminates with aramid layers at both impact and non-impact sides of the laminate exhibits significant improvement in the overall impact behaviour by having a subcritical damage morphology compared to carbon/epoxy laminate. A combined numerical-experimental approach is proposed for evaluating the effective impact performance.

Recent Advances in Fluid Film Bearings and Dampers for Turbomachinery (터보기계에 적용되는 유체 윤활 베어링 및 댐퍼의 최신 연구 동향)

  • Yi, Howon;Jung, Hyunsung;Kim, Kyuman;Lee, Chanwoo;Lim, Homin;Sin, Seki;Choi, Seungho;Ryu, Keun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.215-231
    • /
    • 2020
  • The paper presents extensive survey and review of experimental and analytical researches on fluid film bearings and squeeze film dampers (SFDs) for turbomachinery available in open literature (major archival international journals) published recently (2018 and 2019 only). Over 60 published research works are reviewed based on the research topics and objectives, the types of bearings, size of bearings, and main design parameters with a brief summary of experiments and/or predictions in each work. Some important findings and general observations about the experimental and/or predictive data are also presented. There are several major trends observed throughout the survey. A large portion of the papers focuses on bearing surface textures and effect of operating and assembly conditions on static and/or dynamic forced performances, as well as bearing surface roughness and wear patterns. Researches on geometry of orifices and recesses in hydrostatic (or hybrid) bearings, as well as bearing system stability predictions using thermohydrodynamic analysis and computational fluid dynamics (CFD), are considered as significant topics. Studies on SFDs mainly focus on experimental identification of force coefficients for various SFD geometries and sealing conditions. Reliable experiments of fluid film bearings and SFDs along with the development of experimentally benchmarked predictive tools enable reinforcement of the path for reliable implementations of the bearing components into high performance rotating machinery operating at extreme and harsh conditions. The extensive list of sources of recent experiments in the available open literature is a welcome addition to the analytical community to gauge the accuracy of predictive tools.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

LRB-based hybrid base isolation systems for cable-stayed bridges (사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, Billie-F.Jr.;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.63-76
    • /
    • 2004
  • This paper presents LRB-based hybrid base isolation systems employing additional active/semiactive control devices for mitigating earthquake-induced vibration of a cable-stayed 29 bridge. Hybrid base isolation systems could improve the control performance compared with the passive type-base isolation system such as LRB-installed bridge system due to multiple control devices are operating. In this paper, the additional response reduction by the two typical additional control devices, such as active type hydraulic actuators controlled by LQG algorithm and semiactive-type magnetorheological dampers controlled by clipped-optimal algorithm, have been evaluated bypreliminarily investigating the slightly modified version of the ASCE phase I benchmark cable-stayed bridge problem (i.e., the installation of LRBs to the nominal cable-stayed bridge model of the problem). It shows from the numerical simulation results that all the LRB based hybrid seismic isolation systems considered are quite effective to mitigate the structural responses. In addition, the numerical results demonstrate that the LRB based hybrid seismic isolation systems employing MR dampers have the robustness to some degree of the stiffness uncertainty of in the structure, whereas the hybrid system employing hydraulic actuators does not. Therefore, the feasibility of the hybrid base isolation systems employing semiactive additional control devices could be more appropriate in realfor full-scale civil infrastructure applications is clearly verified due to their efficacy and robustness.

Preliminary Study of Hybrid Micro Gas Turbine Engine (하이브리드 타입 초소형 가스터빈엔진 개발 및 초도 시운전)

  • Seo, Junhyuk;Choi, Juchan;Kwon, Kilsung;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • In this study, a 2W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and experimental investigations of its potential under actual combustion conditions were performed. A micro-gas turbine (MGT) contains a turbo-charger, combustor, and generator. Compressor and turbine blades, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control (CNC) machined static air bearing, and a permanent magnet was attached to the end of the shaft for generation. A heat transfer analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor's high temperature, which was verified in an actual experiment. The generator performance test showed that it can generate 2W at design rotational speed. Prototype micro-gas turbine generated maximum 1 mW electric power and lasted up to 15 minutes.