• Title/Summary/Keyword: Humidity ratio

Search Result 509, Processing Time 0.033 seconds

Drying and Shrinking Characteristics of Food 2. Influencing Factors in Drying and Shrinking Characteristics of Sea Tange (식품의 건조 및 수축특성에 관한 연구 - 2. 다시마의 건조 및 수축특성에 영향을 미치는 인자 -)

  • CHO Duck-Jae;HUR Jong-Hwa;CHUNG Soo-Yeol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.1
    • /
    • pp.16-20
    • /
    • 1988
  • Square slices of sea tangle was dried in hot air drier that could be controlled air temperature, relative humidity and air velocity. Under various drying conditions, drying and shrinking characteristics were investigated. 1) During drying sea, tangle, the constant rate period was nonexistant and the falling rate could be devided into a 2 periods, namely, a first falling rate period and a second falling rate period. 2) The tip part was proceeded more shrinkage than base part, and under drying condition of air temperature $50^{\circ}C$, relative humidity $30\%$, air velocity 0.4m/s, when the moisture content was reduced to $20\%$, the shrinking ratio of tip part, middle part and base part were 57.5, 54.0 and $42.7\%$, respectively. 3) The drying shrinking and drying rate increased with decreasing relative humidity, but when the moisture content was reduced to $20\%$, the shrinking ratio increased with increasing relative humidity.

  • PDF

Experimental Study on Thermal Conductivity of Concrete (콘크리트의 열전도율에 관한 실험적 연구)

  • 김국한;전상은;방기성;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.305-313
    • /
    • 2001
  • Conductivity is an important thermal property which governs heat transfer in a solid medium. Generally, the determination of conductivity in concrete is very difficult, because concrete is a heterogeneous material composed of cement, water, aggregate, et cetera and time dependent material of which properties change with curing age. In this study, influencing factors on thermal conductivity of concrete are quantitatively investigated by QTM-D3, a conductivity tester developed in Japan. Then, a prediction equation of thermal conductivity of concrete is suggested from the regression analysis of test results. To consider the factors influencing thermal conductivity of concrete, mortar, and cement paste, seven testing variables (age, amount of cement, types of admixtures, amount of coarse aggregate, fine aggregate ratio, temperature, and humidity condition) of the specimens are used. According to the experimental results, the amount of coarse aggregate and humidity condition of specimen are the main factors affecting the conductivity of concrete. Meanwhile, the conductivity of mortar and cement paste is strongly affected by the amount of cement and types of admixtures. However, the curing age has minor effect on the conductivity variation. Finally, the prediction formula of concrete conductivity as a function of aggregate amount, fine aggregate ratio, specimen temperature, and humidity condition is developed.

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance (기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.68-74
    • /
    • 2021
  • Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.

An Experimental Study on the Dehumidification Characteristics and the Effectiveness for Operating Conditions of a Desiccant Rotor (운전조건에 따른 제습로터의 제습특성과 유용도에 관한 실험적 연구)

  • Kang, Byung-Ha;Lee, Jin-Joo;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • An experimental study has been carried out to investigate the dehumidification characteristics for several operating conditions of a compact desiccant rotor. This problem is of particular interest in the design of a desiccant type of dehumidifier. Room temperature, room humidity, regeneration temperature, revolution speed and frontal air velocity of desiccant rotor are varied as operating conditions. The results obtained indicate that dehumidification rate is increased with an increase in the room humidity while dehumidification effectiveness is not changed much. It is also found that the optimal rotor speed and optimal regeneration temperature exist for maximum dehumidification rate and dehumidification effectiveness.

Experimental Study on Cooling Load Forecast Using Neural Networks (신경회로망을 이용한 일일 냉방부하 예측에 관한 실험적 연구)

  • Shin, Kwan-Woo;Lee, Youn-Seop;Kim, Yong-Tae;Choi, Byoung-Youn
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.61-64
    • /
    • 2001
  • The electric power load during the peak time in summer is strongly affected by cooling load. which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data approached to the actual data.

  • PDF

Influence of Environment and Construction Factor on the Bleeding of Concrete (콘크리트의 블리딩에 미치는 환경 및 시공요인의 영향)

  • 황인성;김기정;나운;김규동;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.65-68
    • /
    • 2003
  • This study is intended to look into the influence of environment and construction factor on bleeding of concrete. According to the results, as wind is light, relative humidity is high and temperature is low, the amount of bleeding increases greatly, and evaporation speed is influenced greatly by order of wind, temperature and humidity. As the properties of bleeding by construction factor, the amount of bleeding increases with an increase of placing thickness, but the bleeding ratio, the amount of bleeding per unit volume, increases with a decrease of the placing thickness. Bleeding speed is fastest at about 90 minute after placing concrete. Also, as wind is light, relative humidity is high, temperature is low and the placing thickness is thick, bleeding speed grow faster.

  • PDF

The Study on Cooling Load Forecast using Neural Networks (신경회로망을 이용한 냉방부하예측에 관한 연구)

  • 신관우;이윤섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.626-633
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity, The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data is approached to the actual data.

A Study on Daily Cooling Load Forecast Using Fuzzy Logic (퍼지 논리를 이용한 일일 냉방부하 예측에 관한 연구)

  • 신관우;이윤섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.948-953
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system are possible solutions to settle this problem. In this study. the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested, then the method of forecasting the cooling load using fuzzy logic is suggested by simulating that the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated, and it is shown that the forecasted data approach to the actual data. Operating the ice-storage system by the forecast of cooling load with night electric power will improve the ice-storage system efficiency and reduce the peak electric power load during the summer season as a result.

Fabrication of Humidity Control Ceramics from Drinking-Water Treatment Sludge and Onggi Soil

  • Lee, Min-Jin;Lee, Hyeon-Jun;Kim, Kyungsun;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.362-366
    • /
    • 2016
  • In this study, humidity control ceramics with good adsorption/desorption capabilities and high strength were fabricated from drinking-water treatment sludge (DWTS) and Onggi soil. The DWTS powder heat-treated at $800^{\circ}C$ and Onggi soil were mixed at weight ratios of 40:60, 50:50, 60:40, and 70:30 and fired at $800-1000^{\circ}C$. With increasing DWTS content, density and flexural strength increased. For the sample with a DWTS:Onggi soil weight ratio of 70:30, porosity and specific surface area decreased with increasing firing temperature, attributed to densification and grain growth at high firing temperatures. From the results obtained, a firing temperature of $800^{\circ}C$ is the optimum condition for fabricating humidity control ceramics with good adsorption/desorption capabilities and strength. The maximum adsorbed amount for the sample fired at $800^{\circ}C$ was $439g/m^2$.