DOI QR코드

DOI QR Code

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance

기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향

  • Kim, Junseob (School of Chemical Engineering, University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering, University of Ulsan)
  • 김준섭 (울산대학교 화학공학부) ;
  • 김준범 (울산대학교 화학공학부)
  • Received : 2020.12.16
  • Accepted : 2021.01.05
  • Published : 2021.02.10

Abstract

Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.

고분자전해질 연료전지 성능에서 기체확산층 압축률은 계면 접촉 저항과 전극으로의 반응물 전달 및 전극 내 수분 포화도에 영향을 주는 중요한 변수이다. 본 연구에서는 국내 상용 제품인 JNT20-A3를 이용하여 기체확산층 압축률에 대한 연료전지의 성능 평가를 수행하였다. 전극면적 25 ㎠ 단위 전지를 이용하여 상대습도 조건과 압축률에 대한 전기화학 임피던스 분광법과 분극 곡선을 측정하였다. 기체확산층을 18.6%에서 38.1%으로 압축시켰을 때 상대습도 100, 25% 조건에서 ohmic 저항이 각각 8, 30 mΩ·㎠이 감소하여 기체확산층 압축률이 증가할수록 접촉 저항이 감소하는 것과 동시에 막의 수화도가 증가하는 것을 확인하였다. 상대습도 조건에 대한 ohmic 저항의 변화 경향을 통하여, 압축률을 증가시켰을 때 기체확산층의 기공이 감소하여 공기극에서의 물 역확산과 전해질 막의 수화도가 증가하는 것을 확인하였다.

Keywords

References

  1. W. R. Chang, J. J. Hwang, F. B. Weng, and S. H. Chan, Effect of clamping pressure on the performance of a PEM fuel cell, J. Power Sources, 166, 149-154, (2007). https://doi.org/10.1016/j.jpowsour.2007.01.015
  2. E. Khetabi, K. Bouzianea, N. Zamel, X. Francois, Y. Meyer, and D. Candusso, Effects of mechanical compression on the performance of polymer electrolyte fuel cells and analysis through in-situ characterisation techniques - A review, J. Power Sources, 424, 8-26 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.071
  3. T. J. Mason, J. Millichamp, T. P. Neville, A. El-kharouf, B. G. Pollet, and D. J. L. Brett, Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells, J. Power Sources, 219, 52-59 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.021
  4. R. Banerjee, J. Hinebaugh, H. Liu, R. Yip, N. Ge, and A. Bazylak, Heterogeneous porosity distributions of polymer electrolyte membrane fuel cell gas diffusion layer materials with rib-channel compression, Int. J. Hydrog. Energy, 41, 14885-14896 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.147
  5. C Totzke, G. Gaiselmann, M. Osenberg, T. Arlt, H. Markotter, A. Hilger, A. Kupsch, B.R. Mülle, V. Schmidt, W. Lehnert, and I. Manke, Influence of hydrophobic treatment on the structure of compressed gas diffusion layers, J. Power Sources, 324, 625-636 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.118
  6. J. Lee, R. Yip, P. Antonacci, N. Ge, T. Kotaka, Y. Tabuchi, and A. Bazylak, Synchrotron investigation of microporous layer thickness on liquid water distribution in a PEM fuel cell, J. Electrochem. Soc., 162, F669-F676, (2015). https://doi.org/10.1149/2.0221507jes
  7. F. S. Nanadegani, E. N. Lay, and B. Sunden, Effects of an MPL on water and thermal management in a PEMFC, Int. J. Energy Res., 43, 274-296 (2019). https://doi.org/10.1002/er.4262
  8. J. Lee, S. Chevalier, R. Banerjee, P. Antonacci, N. Ge, R. Yip, T. Kotak, Y. Tabuchi, and A. Bazylak, Investigating the effects of gas diffusion layer substrate thickness on polymer electrolyte membrane fuel cell performance via synchrotron X-ray radiography, Electrochim. Acta, 236, 161-170 (2017). https://doi.org/10.1016/j.electacta.2017.03.162
  9. T. Kim, S. Lee, and H. Park, A study of water transport as a function of the micro-porous layer arrangement in PEMFCs, Int. J. Hydrog. Energy, 35, 8631-8643 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.123
  10. P. Deevanhxay, T. Sasabe, S. Tsushima, and S. Hirai, Effect of liquid water distribution in gas diffusion media with and without microporous layer on PEM fuel cell performance, Electrochem. Commun., 34, 239-241, (2013). https://doi.org/10.1016/j.elecom.2013.07.001
  11. M. Blanco and D. P. Wilkinson, Investigation of the effect of microporous layers on water management in a proton exchange membrane fuel cell using novel diagnostic methods, Int. J. Hydrog. Energy, 39, 16390-16404 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.147
  12. J. Ge, A. Higier, and H. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance, J. Power Sources, 159, 922-927 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.069
  13. J. H. Lin, W. H. Chen, Y. J. Su, and T. H. Ko, Effect of gas diffusion layer compression on the performance in a proton exchange membrane fuel cell, Fuel, 87, 2420-2424 (2008). https://doi.org/10.1016/j.fuel.2008.03.001
  14. E. Carcadea, M. Varlam, D. B. Ingham, L. G. Patularu, A. Marinoiu, D. Ion-Ebrasu, and I. Stefanescu, Effect of GDL(+MPL) compression on the PEM fuel cell performance, J. Electrochem. Soc., 75, 167-177 (2016).
  15. C. Simon, F. Hasche, and H. A. Gasteiger, Influence of the gas diffusion layer compression on the oxygen transport in PEM fuel cells at high water saturation levels, J. Electrochem. Soc., 164, F591-F599 (2017). https://doi.org/10.1149/2.0691706jes
  16. N. Khajeh-Hosseini-Dalasm, T. Sasabe, T. Tokumasu, and U. Pasaogullari, Effects of polytetrafluoroethylene treatment and compression on gas diffusion layer microstructure using high-resolution X-ray computed tomography, J. Power Sources, 266, 213-221 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.004
  17. U. U. Ince, H. Markotter, M. G. George, H. Liu, N. Ge, J. Lee, S. S. Alrwashdeh, R. Zeis, M. M. Messerschmidt, J. Scholta, and A. Bazylak, Effects of compression on water distribution in gas diffusion layer materials of PEMFC in a point injection device by means of synchrotron X-ray imaging, Int. J. Hydrog. Energy, 43, 391-406 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.047
  18. Y. Wu, J. I. S. Cho, X. Lu, L. Rasha, T. P. Neville, J. Millichamp, R. Ziesche, N. Kardjilov, H. Markotter, P. Shearing, and D. J. L. Bretta, Effect of compression on the water management of polymer electrolyte fuel cells: An in-operando neutron radiography study, J. Power Sources, 412, 597-605 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.048
  19. L. Wang, A. Husar, T. Zhou, and H. Liu, A parametric study of PEM fuel cell performances, Int. J. Hydrog. Energy, 28, 1263-1272 (2003). https://doi.org/10.1016/S0360-3199(02)00284-7
  20. M. G. Santarelli and M. F. Torchio, Experimental analysis of the effects of the operating variableson the performance of a single PEMFC, Energy Convers. Manag., 48, 40-51.(2007). https://doi.org/10.1016/j.enconman.2006.05.013
  21. S. Haji, Analytical modeling of PEM fuel cell i-V curve, Renew. Energ., 36, 451-458 (2011). https://doi.org/10.1016/j.renene.2010.07.007
  22. J. Kim, S. Lee, and S. Srinivasan, Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Electrochem. Soc., 8, 2670-2674 (1995).
  23. S. D. Fraser and V. Hacker, An empirical fuel cell polarization curve fitting equation for small current densities and no-load operation, J. Appl. Electrochem., 38, 451-456 (2008). https://doi.org/10.1007/s10800-007-9458-2
  24. D. Hao, J. Shen, Y. Hou, Y. Zhou, and H. Wang, An improved empirical fuel cell polarization curve model based on review analysis, Int. J. Chem. Eng., 16, 1-10 (2016).