• Title/Summary/Keyword: Humidity Sensing Properties

Search Result 56, Processing Time 0.028 seconds

The Characteristics of Polyimide Humidity Sensor Fabricated by Electrophoretic Deposition (전기영동법에 의해 제작된 폴리이미드 박막의 습도특성II)

  • Cho, D.H.;Han, S.O.;Park, K.S.;Jeong, S.Y.;Park, C.H.;Park, G.M.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1728-1731
    • /
    • 1996
  • To develop more sensitive humidity sensor on high temperature region, in this paper, we prepared polyimide humidity sensor by electrophoretic method. Sensing properties of be sensor in high temprature region were studied and compared with that prepared by solution casting method. From the result, the thiner film thickness, the more sensitive. however, It is difficult to make he thickness optimal because of short between electrodes, and the thickness of upper electrode is one of most important parameters affecting pefomance of the sensor.

  • PDF

Possible application of single-walled carbon nanotube transistors for humidity sensor (단겹 탄소나노튜브 트랜지스터의 나노습도센서 응용가능성 연구)

  • Na, Pil-Sun;Kim, Hyo-Jin;Lee, Young-Hwa;Lee, Jeong-O;Kim, Jin-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.331-336
    • /
    • 2005
  • The influence of water molecule on the electrical properties of single-walled carbon nanotube field effect transistors (SWNT-FETs) was reported. Conductance suppression was observed with the increase of the humidity. This can be explained by doping of the SWNT-FETs, which has p-type semiconductor characteristic, with the water molecules acting as an electron donor. However, after 65 % of humidity, conductance of the SWNT-FETs started to increase again, due to the opening of electron channels. Upon annealing at $400^{\circ}C$ in Ar atmosphere, conductance increases more than 500 %, and the threshold voltage shifts toward further positive gate voltages. The results of this experiment support possible application of single-walled carbon nanotubes for humidity sensing material.

Preparation of Water-Resistant Humidity Sensor Using Photocurable Reactive Oligomers Containing Ionene Unit and Their Properties (이온넨 단위를 가지는 광경화성 반응성 올리고머를 이용한 내수성 습도센서의 제조 및 감습 특성)

  • Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • New polyelectrolytes derived from ionene-containing photocurable reactive oligomer (PIDM) were prepared for water-resistant humidity-sensitive membranes. The mixture of PIDM, hexamethylene dimethacrylate (HDM), pentaerythritol triacrylate dimer (SP1013), and photoinitiator was simultaneously coated on the sensor electrode with photoinitiated radical polymerization. The pretreatment of the substrates with vinyl-type silane-coupling reagent was performed for improving the water durability and stability of the sensors at high temperature and humidity. When the resistance dependences on the relative humidity of the crosslinked PIDMs were measured, it was found that the resistance varied three orders of magnitude between 20 and 90%RH, which was required for the humidity sensor operating at ambient humidity. Their hysteresis, temperature dependence, response time, water durability, and high temperature/humidity stabilities were measured and evaluated as a humidity-sensing membrane.

Nondestructive Sensing Evaluation of Electrospun PVDF Fiber and Carbon Nanotube/Epoxy Composites Using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 Electrospun PVDF Fiber 및 CNT 강화 Epoxy 복합재료의 비파괴 감지능 평가)

  • Jung, Jin-Gyu;Kim, Sung-Ju;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.153-156
    • /
    • 2005
  • Nondestructive sensing of electrospun PYDF web and multi-wall carbon nanotube (MWCNT)/epoxy composites were investigated using electro-micromechanical technique. Electrospinning is a technique used to produce micron to submicron diameter polymeric fibers. Electrospun PVDF web was also evaluated for the sensing properties by micromechanical test and by measurement electrical resistance. CNT composite was especially prepared for high volume contents, 50 vol% of reinforcement. Electrical contact resistivity on humidity sensing was a good indicator for monitoring as for multifunctional applications. Work of adhesion using contact angle measurement was studied to correlate acid-base surface energy between carbon fiber and CNF composites, and will study furher for interfacial adhesion force by micromechanical test.

  • PDF

Resistive Humidity Sensor Using New N-Methacryloyl-N'-ethyl-N'-propyl Piperazinium Bromide Monomer and Their Properties (새로운 N-Methacryloyl-N'-ethyl-N'-propyl Piperazinium Bromide 단량체를 사용한 습도센서 및 그들의 특성 조사)

  • Lee, In-Ho;Park, Chan-Kyo;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.326-332
    • /
    • 2009
  • New humidity-sensitive monomer, N-methacryloyl-N'-ethyl-N'-propyl piperazinium bromide (MANEPPB) was prepared by the quaternization reaction of N-methacryloyl-N'-ethyl piperazine (MANEP) with 1-bromopropane. Polyelectrolytes derived from the copolymers composed of MANEPPB/MMN/AA=60/35/5, 70/25/5, 80/15/5, 90/5/5 and 95/0/5 were prepared for the humidity-sensitive membranes, which were fabricated on the gold electrode by dipping method and were crosslinked by reacting copolymers with aziridine crosslinker, trimethylolpropane tris(2-methyl-1-aziridinopropionate) (TTAP). When the resistance dependences on the relative humidity of the sensors were measured, it was found that the resistance varied three orders of magnitude between 20 and 90%RH, which was satisfied with the requirement for the common humidity sensor operating at ambient humidity. Their hysteresis, temperature dependence, frequency dependence, response and recovery time and water durability were measured and evaluated as a humidity-sensing membrane.

surface acoustic wave oscillator hymidity sensor using hexafluoropropene plasma thin film (헥사플루오르프로펜 플라즈마박막을 이용한 표면탄성파발진기 습도센서)

  • 박남천;서은덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.144-146
    • /
    • 1992
  • Surface acoustic wave(SAW) oscillator offers many attractive features for application to vapor sensors. The perturbation of SAW velocity by the hexafluoropropence plasma polymer thin film has been studied for relative humidity sensing. adsorption of moisture produces rapid aid changes in the properties of the film, resulting in a change in the velocity of surface acoustic waves and, hence, in the frequency of one SAW oscillator. The device used in our experiments have 55 MHZ SAW oscillator fabricated on a LiNbO substrate.

  • PDF

Characteristics of Polyimides Humility Sensor Fabricated by using Electrophoretic Deposition (전기영동법에 의해 제작된 폴리이미드 박막의 습도 특성)

  • 조동헌;정병기;한상옥;김종석;박강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.67-70
    • /
    • 1994
  • On this study, we fabricated humudity sensor with polyimide thin film from the nonaqueous emulsion by the electrophoretic deposition as a function of film thickness. then evaluated performance of the sensor with increasing relative humidity if constant temperature constant humidity chamber, which is electronically controlled. we designed upper electrode of the sensor to brush type to make moisture particles permeate into the polymer bulk. sensing properties of the sensor on % RH shows proportion on the low %RH. Fer the 30V-30S- 200$^{\circ}C$ sample, percentage changing of capacitance on from 30 %RH to 90 %RH is 45.8 %, and increasing rate per 1 % RH of capacitance is 11.25 pF

  • PDF

Electrical Properties of Temperature Coefficient of Resistance and Heat Radiation Structure Design for Shunt Fixed Resistor (저항 온도계수와 방열 구조설계에 따른 션트 고정 저항의 전기적 특성)

  • Kim, Eun Min;Kim, Hyeon Chang;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.107-111
    • /
    • 2018
  • In this study, we designed the temperature coefficient of resistance (TCR) and heat radiation properties of shunt fixed resistors by adjusting the atomic composition of a metal alloy resistor, and fabricated a resistor that satisfied the designed properties. Resistors with similar atomic composition of copper and nickel showed low TCR and excellent shunt fixed resistor properties such as short-time overload, rated load, humidity load, and high temperature load. Finally, we expect that improved sensor accuracy will be obtained in current-distribution-type shunt fixed resistor for IoT sensors by designing the atomic composition of the metal alloy resistor proposed in this work.

Mass Sensing Properties of Fatty Acids System LB Films (공진주파수와 저항을 이용한 지방산 LB막의 질량감지 특성)

  • 진철남;김경환;강현욱;권영수;장정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.419-422
    • /
    • 1998
  • There are lots of researches which are using quratz crystal in order to apply it to sensors, for example, mass detect sensor, humidity sensor, gas sensor, etc. We tried to apply quartz crystal to the sensor using the resonant frequency and the resistance properties. Four kinds of fatty acid which are having the same head group are coated at the surface of quartz crystal, the shift of the resonant frequency and the resistance are observed according to length of the tail group. Myristic acid$(C_{14})$, palmitic acid$(C_16)$, stearic acid$(C_{18})$, and arachidic acid$(C_{20})$ were coated by Langmuir-Blodgett(LB) technique. As results, the resonant frequency shift was observed linearly. However, there are some difference compared with Sauerbrey's equation. It can be explained by the effect of the temperature property and/or humidity. On the other hand, the shift of the resistance was observed nonlinearly.

  • PDF