• Title/Summary/Keyword: Humidity Control

Search Result 1,151, Processing Time 0.036 seconds

Design and Implementation the Control System of Automatic Spry Based on Sensor Network Environment (센서네트워크 환경 기반의 자동 분무기 제어시스템의설계 및 구현)

  • Kwak, Yoon-Sik;Goo, Boon-Kun;Cheong, Seung-Kook
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, we design and implement a automatic control system of wireless sensor network based sprayer for hog barns. The proposed control system is driven by events from sensor nodes. It gathers various sensor readings such as temperature, humid, water level and water temperature, and controls the sprayer in real time by analyzing the sensor readings. Through experiments, we show that the proposed control system manages temperature and humidity steadily. Our proposed system enhances the existing system about 33% for temperature management and 37.3% for humidity management.

Control of Environments in Greenhouse Using Programmable Logic Controller (PLC를 이용한 온실의 환경제어)

  • 김동억;조한근;김형준
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.599-606
    • /
    • 1998
  • This study was carried out to develop the control system with PLC and its operating software and to investigate its control ability of greenhouse environments. Two experimental greenhouses were controlled by PLC and ON/OFF controller, respectively. In greenhouse controlled by PLC, target values of air temperature, relative humidity and $CO_2$ concentration were automatically changed. In warm-water heating, the variation of air temperature was reduced to $\pm$ $0.6^{\circ}C$ by the method of proportional-integration(PI) control with an inverter. In ventilation, the variation of air temperature was reduced, since windows open and close with multistage by mutual relation formula among the target, indoor, and outdoor temperature. Relative humidity at daytime was maintained with range of 35% to 55% by PLC controlled fogger. $CO_2$ concentration was automatically controlled from 300 to 800 $\mu$molㆍ$mol^{-1}$ according to amount of solar radiation. The suppling amount and frequency of nutrient solution were controlled by total integrated solar radiation. Difference in the yield of cucumber in the greenhouse controlled by PLC and by ON/OFF controller was not significant at the 5% level.

  • PDF

마이크로프로세서를 응용한 식물재배용 관수 광량 제어장치

  • Kim, Jong-Man;Kim, Yeong-Min;Kim, Won-Seop;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.4-4
    • /
    • 2010
  • Multi Cultivation Remote-control System(MCRS) for crops through characteristics of multi-safe sensors was realized. It was carried out to investigate into the effect of LED Control with the physiological activity of crops(for examples, sprouts). We have also composed a Combined Automatic Control System possible for the control of temperature and humidity at the same time. And we producted the remote control as using Linux.

  • PDF

An Experimental Study on the Comfortable Room Control Conditioning Using Personal Computer (컴퓨터를 이용한 가정용 냉방기기의 실내쾌적조건 조절에 관한 실험적 연구)

  • Cho, Jin Ho;Lee, Dae Woo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.442-447
    • /
    • 1988
  • To keep comfortable indoor condition, the existing air conditioning system is controlled by the ON/OFF temperature controller. The PID control unit is developed to control temperature and humidity simultaneously, and the Air-conditioning control system is transferred from the ON/OFF temperature controller to the PID control unit for experiment. As a result of this experiment, the PID control unit reduced energy consumption compared with the ON/OFF control unit.

  • PDF

The Characteristics of the winter season window and indoor temperature due to the indoor plant (동계 이중외피와 내부식재에 의한 실내 온도 특성에 관한 연구)

  • Yun, Young-Il;Cho, Ju-Young
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Purpose: This study desires to investigate an effect of indoor temperature, humidity, and illuminance targeting a planting system of double-skin facade and cavity space adjacent to the outside within a certain period of winter. Through this, the study suggests a basic material about an energy conservation effect of double window system using planting to reduce heating load of a building in winter, so desires to contribute to indoor thermal comfort effect and illuminance correction study of double window and indoor plant. Method: Considering effects such as day and night climatic elements and air conditions in winter, illuminance measurement was conducted through a double-skin facade of space, a subject of the measurement, on the basis of practical residence time of a resident, and this study analyzed characteristics of indoor illuminance about this. The study measured and compared a change of insolation, dry-bulb temperature, and relative humidity at each indoor-outdoor measuring point, so measured and compared characteristics of an indoor temperature effect by elements of double-skin facade and indoor plant. Result: Through this study, the researcher could determine that indoor plant within double window in winter not only blocks solar radiation but also photosynthesizes, so is somewhat disadvantageous to winter thermal comfort reducing heating load. In addition, solar radiation going through interior plays a role to bring down somewhat high humidity to about 50% of reasonable humidity, so plays a direct role of maintenance of comfortable indoor space. Although there are effects such as blocking of solar radiation and temperature reduction, this has a positive influence on humidity control and proper illuminance distribution. The researcher could determine that illuminance, temperature, and humidity by solar radiation penetration for the whole measuring time play a role to supplement indoor environment mutually.

Performance analysis of an experimental plant factory

  • Ryu, Dong-Ki;Kang, Sin-Woo;Chung, Sun-Ok;Hong, Soon-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.395-403
    • /
    • 2013
  • Plant factory has drawn attention in many countries in the world due to capability of environmental control not only for better yield and quality, but also for increase in functional and medicinal components of the products. In this paper, an experimental plant factory was constructed for various tests under different environmental conditions, and the operations were evaluated. A production room was constructed with adiabatic materials with dimensions of $6,900{\times}3,000{\times}2,500$ mm ($L{\times}W{\times}H$). Four sets of $2,890{\times}600{\times}2,320$ mm ($L{\times}W{\times}H$) production frame unit, each with 9 light-installed beds and an aeroponic fertigation system, resulting in 36 beds, were prepared. Accuracy and response were evaluated for each environmental control component with and without crops. Air temperature, humidity, $CO_2$ concentration, light intensity, frequency, and duty ratio, fertigation rate and scheduling were controllable from a main control computer through wireless communication devices. When the plant factory was operated without crop condition, the response times were 8 minutes for change in temperature from 20 to $15^{\circ}C$ and 20 minutes from 15 to $20^{\circ}C$; 7 minutes for change in humidity from 40 to 65%; and 4 minutes for change in $CO_2$ concentration from 450 to 1000 ppm. When operated for 24 hours with crop cultivation; average, maximum, and minimum values of temperatures were 20.06, 20.8, and $18.8^{\circ}C$; humidity were 66.72, 69.37, and 63.73%; $CO_2$ concentrations were 1017, 1168, and 911 ppm, respectively. Photosynthetic Photon Flux Density was increased as the distance from the light source decreased, but variability was greater at shorter distances. Results of the study would provide useful information for efficient application of the plant factory and to investigate the optimum environment for crop growth through various experiments.

Control of Bemisia tabaci by Two-Fluid Fogging System (이류체 포그시스템을 활용한 가루이 방제)

  • Kim, Sung-Eun;Lee, Sang-Don;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.394-398
    • /
    • 2011
  • The effect of two-fluid fogging system on the control of Bemisia tabaci in tomato cultivation was evaluated in a greenhouse. The number of Bemisia tabaci was decreased by 87% from the fog treatment for 7 days. During the fog treatment, the mean daily temperature was decreased by $2^{\circ}C$ and the mean daily relative humidity was increased by 3~4% as compared to the non-treatment. The reduction of Bemisia tabaci in the treatment might not be resulted from the differences in temperature and humidity in the greenhouse. The sound coming from the two-fluid fogging system did not affect when it was operated without water inside. Therefore it was concluded that water droplets coming out the nozzle reduced the growth and the movement of whiteflies because the suspension of tiny water droplets were attached on the skin of whiteflies.

Design of Smartfarm Environment Controller Using Fuzzy Control Method and Human Machine Interface for Livestock Building (퍼지 제어법과 HMI를 이용한 축사용 스마트팜 환경 제어기 설계)

  • Byeong-Ro Lee;Ju-Won Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.129-136
    • /
    • 2022
  • The most important part of the smart livestock building system is to maintain a breeding environment so that livestock can grow to high quality despite changes in the internal and external atmospheric environment. Especially, it is very important to maintain the temperature and humidity in the livestock building because various diseases occur during the summer and winter. To manage the environment suitable for livestock, a smartfarm system for livestock building is applied, but it is very expensive. In this study, we propose a hardware design and control method for low cost system based on HMI and fuzzy control. To evaluate the performance of the proposed system, we did a simulation experiment in the atmospheric conditions of summer and winter. As a result, it showed the performance of minimizing the temperature and humidity stress of livestock. And when applied to the livestock building, the proposed system showed stable control performance even in the change of the external atmospheric environment. Therefore, as with these results, if proposed system in this study is applied to the smart farm system, it will be effective in managing the environment of livestock building.

Effect of Insamyangyoung-tang on the Skin Barrier Function of Hairless Mice

  • Nam, Hae-Jeong;Kim, Yoon-Bum
    • The Journal of Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.18-26
    • /
    • 2007
  • Objective : To study the effect of the Insamyangyoung-tang(ISYT) extract on the skin barrier function, the skin pH, skin humidity and transepidermal water loss(TEWL) were measured and histological changes were observed in DNCB(2,4-dinitrochloro-benzen)-induced contact dermatitis(CD) hairless mice. Methods : The male hairless mice were divided into three groups. Each group consisted of 15 mice. The normal group which had acetone- olive oil applied. The control group which had intentionally induced CD by DNCB and it was fed normal saline orally. The ISYT group which had intentionally induced CD by DNCB and it was fed ISYT extract orally for 7 days. The three groups were checked 24h, 48h and 72h later after inducing CD, and the skin pH, skin humidity and TEWL were observed. Tissue samples were taken, and damage to the epithelial cell was observed. Statistical analysis was performed by using one way-ANOVA: significance was set at p values less than 5% (p<0.05). Results : ISYTextract efficiently maintained the pH balance, it kept the skin humidity at a normal level, and it inhibited TEWL of the DNCB-induced CD hairless mouse. The damage to the epithelium was decreased and the regeneration power of the skin was increased in the ISYT group. Conclusion : Insamyangyoung-tang has a good effect on the skin barrier function of DNCB induced contact dermatitis hairless mice.

  • PDF

Photovoltaic Generation System Design for Controlling the Temperature and Humidity of Hospital (병원내 온도와 습도조절을 위한 태양광 발전 시스템 설계)

  • Cho, Moon-Taek;Lee, Chung-Sik;Baek, Jong-Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.127-134
    • /
    • 2011
  • In this paper we propose an improved PV generation systems. Improved systems for temperature and humidity controlled heating and air conditioning offers a pleasant environment within the building, set up chopper and consists of a PWM voltage type inverter. The proposed system is stable modulation for a one-chip microprocessor using the synchronous signal and control signals was treated. The proposed system is a PWM voltage type inverter and phase of the synchronous to the grid voltage to detect the system voltage and inverter output to drive the statue, so surplus power to connection was able to, certain buildings such as buildings or hospitals, temperature and humidity sensor is applied to the good dynamic characteristic could be obtained. In addition, the system was applied to the high power factor and low-frequency harmonics by maintaining the output load and grid to power to be supplied to a stable control could get a good result.