• Title/Summary/Keyword: Humic substances (HS)

Search Result 19, Processing Time 0.02 seconds

Effect of $H_2O_2$ and Metals on The Sonochemical Decomposition of Humic Substances in Wastewater Effluent

  • Jung, Oh-Jun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.127-137
    • /
    • 2001
  • The sonochemical Process has been applied as a treatment method and was investigated its effect on the decomposition of humic substances(HS). The reaction kinetics and mechanisms in the Process of sonochemical treatment for humic substances(HS) in wastewater have also been discussed. It was observed that the metal ions such as Fe(II) and Mn(II) showed catalytic effects, while Al(III), Ca(II), and Mg(II) had inhibitory effects on the decomposition of humic substances in sonochemical reaction with hydrogen peroxide. Experimental results also showed factors such as hydrogen peroxide dose affected the formation of disinfection by-products. Two trihalomethanes, chloroform and dichlorobromomethane were formed as major disinfection by-products during chlorination. The mechanism of radical reaction is controlled by an oxidation process. The radicals are so reactive that most of them are consumed by HS radicals and hydroxyl radicals can be acted on organic solutes by hydroxyl addition, hydrogen abstraction, and electron transfer. The depolymerization and the radical reaction of HS radicals appear to occur simultaneously. The final steps of the reaction are the conversion of organic acids to carbon dioxide.

  • PDF

Effects of Supplemental Humic Substances on Egg Production and Quality in Laying Hens (Humic Substances의 급여가 산란계의 산란율과 난 특성에 미치는 영향)

  • Wang, Q.;Yoo, J.S.;Chen, Y.J.;Kim, H.J.;Cho, J.H.;Min, B.J.;Park, B.C.;Kim, I.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.4
    • /
    • pp.317-321
    • /
    • 2006
  • The effects of dietary humic substances (HS) on egg Production and egg Quality were studied using 252(55-wk old) ISA brown laying hens. laying were divided into 21 groups of 12 hens each and seven groups (experimental units) were assigned to 1) CON (basal diet), 2) HS5 (basal diet 4- 5% humic substances) or 3) HS10 (basal diet +10% humic substances) in a completely randomized block design. Hens had free access to diets and water fur 6 wk. Egg Production and egg quality were monitored over the 6-wk Period. Results showed that 10% dietary HS decreased egg Production and yolk diameter (P<0.05) compared to CON. Egg weight and yolk cole. were improved (P<0.05) in HS10 compared to CON. Egg shell breaking strength was increased significantly (P<0.05) when hens were fed HS5 diet compared to the others. There were no effects of treatments on egg shell thickness, yolk index, albumen height and Haugh nit. The results suggest that the dietary supplementation of HS at 5% or 10% decreases egg Production, but HS at 5% can increase egg shell breaking strength. Hens fed 10% HS could increase egg weight and yolk color and decrease yolk diameter.

EFFECTS OF H2O2, TURBIDITY AND METALS ON SONOCHEMICAL DECOMPOSITION OF HUMIC SUBSTANCES IN WASTEWATER EFFLUENT

  • Kim, Il-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.271-282
    • /
    • 2002
  • The sonochemical process has been applied as a treatment method to investigate its effect on the decomposition of humic substances (HS). The reaction kinetics and mechanisms in the process of sonochemical treatment for humic substances in wastewater have also been discussed. It was observed that the metal ions such Fe(II) and Mn(II) showed catalytic effects, while Al(III), Ca(II), and Mg(II) had inhibitory effects on the decomposition of humic substances in sonochemical reaction with hydrogen peroxide. Experimental results also showed factors such as hydrogen peroxide dose affected the formation of disinfection by-products. Two trihalomethanes, chloroform and dichlorobromomethane were formed as major disinfection by-products during chlorination. The depolymerization and the radical reaction of HS radicals appear to occur simultaneously. The final step of the reaction is the conversion of organic acids to carbon dioxide.

Spectroscopic Characterization and Seasonal Distribution of Aquatic Humic Substances Isolated from Han River Water (한강원수로부터 분리된 수중휴믹물질의 계절적 분포와 분광학적 특성분석)

  • Kim, Hyun-Chul;Lee, Seock-Heon;Kim, Kyung-Ju;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.540-547
    • /
    • 2007
  • Humic substances(HS) from Han River water was physic-chemically isolated by fractionational methods to investigate the seasonal distribution and to characterize the properties compared with intrinsic humic materials. Various HS samples were analyzed by element, Fourier transform infrared(FT-IR), proton nuclear magnetic resonance$(^1H-NMR)$ and fluorescence analyzers. The portion of HS from Han River water(HRHS) was 47.0% on the average, however it appeared that rainfall event brought about higher fraction of HS in Han River water by the periodic investigation. Aromaticity and humification degree of the HRHS were relatively lower than those of intrinsic humic materials originated from decomposing vegetation. FT-IR, $^1H-NMR$ and fluorescence spectroscopy showed the distinct differences between HRHS and intrinsic humic materials. Commercial humic materials could not represent structural and functional characteristics of local HS. The fluorescence spectroscopy, a relatively simple measurement, was found most useful tool to estimate humification degree for humic materials from particular sources.

INFLUENCE OF HUMIC SUBSTANCE (HS) ADSORPTIVE FRACTIONATION ON PYRENE PARTITIONING TO DISSOLVED AND MINERAL-ASSOCIATED HS

  • Hur, Jin;Schlautman, Mark A.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.123-127
    • /
    • 2003
  • Changes in pyrene partitioning due to mineral surface adsorptive fractionation processes of humic substances (HS) were examined in model environmental systems. For purified Aldrich humic acid(PAHA), carbon-normalized pyrene binding coefficients ( $K_{oc}$ ) for the residual (i.e., nonadsorbed and dissolved) PAHA components were different from the original dissolved PAHA $K_{oc}$ , value prior to contact with mineral suspensions. A positive correlation between the extent of pyrene binding and weight-average molecular weight (M $W_{w}$) of residual PAHA components was observed, which appeared to be unaffected by the specific mineral adsorbents use and fractionation mechanisms. A similar positive correlation was not observed with the adsorbed PAHA components, suggesting that conformational changes occurred for the mineral-associated components upon adsorption. Nonlinear pyrene sorption to mineral-associated PAHA was observed, and the degree of nonlinearity is hypothesized to be dependent on adsorptive fractionation effects and/or structural rearrangement of the adsorbed PAHA components.s.

  • PDF

Removal Characteristics of cobalt by Complexation with Humic Substances

  • 양지원;김호정;백기태;김보경
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.128-131
    • /
    • 2003
  • It is well known that the membrane separation process combined with surfactant micelle (micellar-enhanced ultrafiltration) or polyelectrolyte (polyelectrolyte-enhanced ultrafiltration) can remove heavy metals effectively. However, the environmental hazard of surfactant or polyelectrolyte remained in effluent is a serious disadvantage of these methods. In this study, humic substances (HS) were used as complexing agents for metal removal instead of synthetic chemicals. The HS are a sort of natural organic matters which are biodegradable and abundant in natural environment. And the functional groups such as carboxyl groups and phenols in HS can bind with the cationic radionuclides and form complexes. Therefore separation process using them will be more environmental-friendly. The effects of concentration of HS and pH on the removal of cobalt were investigated. The ultrafiltration process was applied to the separation of the cobalt - HS complexes from the aqueous stream. At the concentration of > 3 g/L of HS and pH of 6, over 95 % of cobalt was removed by regenerated cellulose membrane of molecular weight cut-off (MWCO) 3,000. As the concentration of HS increased, the removal of cobalt also was improved because of increase in biding sites (functional groups). The cobalt removal increased from 72.5 % to 97.5 % when pH increased from 4 to 8 at the concentration of 3 g/L HS because of increase in HS solubility and cobalt hydroxide precipitation. In the presence of NaCl, the removal efficiency of cobalt decreased.

  • PDF

Draft genome sequence of humic substances-degrading Pseudomonas kribbensis CHA-19 from temperate forest soil (중위도 산림토양에서 분리한 부식질 분해능이 있는 Pseudomonas kribbensis CHA-19의 유전체 염기서열 초안)

  • Kim, Dockyu;Lee, Hyoungseok
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.177-179
    • /
    • 2019
  • Pseudomonas kribbensis CHA-19 was isolated from a temperate forest soil (mid latitude) in New Jersey, USA, for its ability to degrade humic acids, a main component of humic substances (HS), and subsequently confirmed to be able to decolorize lignin (a surrogate for HS) and catabolize lignin-derived ferulic and vanillic acids. The draft genome sequence of CHA-19 was analyzed to discover the putative genes for depolymerization of polymeric HS (e.g., dye-decolorizing peroxidases and laccase-like multicopper oxidases) and catabolic degradation of HS-derived small aromatics (e.g., vanillate O-demethylase and biphenyl 2,3-dioxygenase). The genes for degradative activity were used to propose a HS degradation pathway of soil bacteria.

Structural and Chemical Characterization of Aquatic Humic Substances in Advanced Water Treatment Processes (고도정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석)

  • Kim, Hyun-Chul;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.240-246
    • /
    • 2005
  • Humic substances HS) from process waters at advanced water treatment plant consisted of GAC and Ozone/GAC processes were isolated and extracted by physicochemical fractionation methods to investigate their characteristics. They are characterized for their functionality, chemical composition, spectroscopic characteristics using FT-IR and $^1H$-NMR spectroscopy. Humic fraction gradually decreased from 36.3% to 24.2% from 0.45 to 0.30 mgC/L) through ozonation and carbon adsorption. The humic fraction was isolated into the phenolic and carboxylic groups using A-21 resin, and the concentration of phenolic groups gradually decreased from 38.4% to 23.5% (from 4.9 to $3.2\;{\mu}M/L$ as phenolic-OH) through ozonation and carbon adsorption. In the case of carboxylic groups, the concentration decreased from 61.6% to 43.3% (from 7.8 to $5.8\;{\mu}M/L$ as COOH) through the water treatment processes. On the other hand, concentrations of those roups decreased from 38.4% to 24.0% and 61.6% to 44.9% through carbon adsorption without ozonation, respectively. The structural changes of HS identified from FT-IR and $^1H$-NMR were consistent with the results from the isolation of functional groups in HS.

Structural and Chemical Characterization of Aquatic Humic Substances in Conventional Water Treatment Processes (재래식 정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석)

  • Kim, Hyun-Chul;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • Humic substances(HS) from raw and process waters at a conventional water treatment plant were isolated and extracted by physicochemical fractionation methods to investigate their characteristics. They are characterized for their functionality, chemical composition, and spectroscopic characteristics using FT-IR(Fourier transform infrared) and $^1H-NMR$(proton nuclear magnetic resonance) spectroscopy. Humic fraction gradually decreased from 47.2% to 26.4%(from 0.97 to 0.54 mgC/L) through conventional water treatment processes. Concentration of phenolic groups in the HS fraction gradually decreased from 60.5% to 21.8%(from 12.2 to $6.0\;{\mu}M/L$ as phenolic-OH) through water treatment. In the case of carboxylic groups, the concentration increased from 39.5% to 46.9%(from 7.9 to $10.6\;{\mu}M/L$ as COOH) by pre-chlorination, but gradually decreased to 34.2%($9.4\;{\mu}M/L$ as COOH) through sedimentation and sand filtration. From the results of the FT-IR and $^1H-NMR$ spectra of HS, the content of carboxylic groups increased and ratio of aliphatic protons to aromatic protons($P_{Al}/P_{Ar}$) also increased through water treatment, which indicated the increase of aliphatic compounds.

Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

  • Gomez-Rosales, S.;Angeles, M. De L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.215-222
    • /
    • 2015
  • The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water.