• 제목/요약/키워드: Humeral component

검색결과 10건 처리시간 0.021초

Short Humeral Stems in Shoulder Arthroplasty

  • Oh, Hwang Kyun;Lim, Tae Kang
    • Clinics in Shoulder and Elbow
    • /
    • 제21권2호
    • /
    • pp.105-110
    • /
    • 2018
  • Since the introduction of shoulder arthroplasty by Neer in 1974, the design of not only the glenoid component but also the humeral component used in shoulder arthroplasty has continually evolved. Changes to the design of the humeral component include a gradually disappearing proximal fin; diversified surface finishes (such as smooth, grit-blasted, and porous coating); a more contoured stem from the originally straight and cylindrical shape; and the use of press-fit uncemented fixation as opposed to cemented fixation. Despite the evolution of the humeral component for shoulder arthroplasty, however, stem-related complications are not uncommon. Examples of stem-related complications include intraoperative humeral fractures, stem loosening, periprosthetic fractures, and stress shielding. These become much more common in revision arthroplasty, where patients are associated with further complications such as surgical difficulty in extracting the humeral component, proximal metaphyseal bone loss due to stress shielding, intraoperative humeral shaft fractures, and incomplete cement removal. Physicians have made many attempts to reduce these complications by shortening the stem of the humeral component. In this review, we will discuss some of the limitations of long-stem humeral components, the feasibility of replacing them with short-stem humeral components, and the clinical outcomes associated with short-stemmed humeral components in shoulder arthroplasty.

Patient-specific Guides Using 3-dimensional Reconstruction Provide Accuracy and Reproducibility in Reverse Total Shoulder Arthroplasty

  • Yoon, Jong Pil;Kim, Dong Hyun;Jung, Jae Wook;Lee, Chang-Hwa;Min, Seunggi;Lee, Hyun Joo;Kim, Hee-June
    • Clinics in Shoulder and Elbow
    • /
    • 제22권1호
    • /
    • pp.16-23
    • /
    • 2019
  • Background: We aimed to evaluate whether the use of our novel patient-specific guide (PSG) with 3-dimensional reconstruction in reverse total shoulder arthroplasty (RTSA) would allow accurate and reliable implantation of the glenoid and humeral components. Methods: 20 fresh-frozen cadaveric shoulders were used. The PSG group (n=10) and conventional group (n=10) was evaluated the accuracy and reproducibility of implant positioning between before and after surgery on the computed tomography image. Results: The superoinferior and anteroposterior offset in the glenoid component were $0.42{\pm}0.07$, $0.50{\pm}0.08$ in the conventional group and $0.45{\pm}0.03$, $0.46{\pm}0.02$ in the PSG group. The inclination and version angles were $-1.93^{\circ}{\pm}4.31^{\circ}$, $2.27^{\circ}{\pm}5.91^{\circ}$ and $0.46^{\circ}{\pm}0.02^{\circ}$, $3.38^{\circ}{\pm}2.79^{\circ}$. The standard deviation showed a smaller difference in the PSG group. The anteroposterior and lateromedial humeral canal center offset in the humeral component were $0.45{\pm}0.12$, $0.48{\pm}0.15$ in the conventional group and $0.46{\pm}0.59$ (p=0.794), $0.46{\pm}0.06$ (p=0.702) in the PSG group. The PSG showed significantly better humeral stem alignment. Conclusions: The use of PSGs with 3-dimensional reconstruction reduces variabilities in glenoid and humerus component positions and prevents extreme positioning errors in RTSA.

견관와-상완 관절의 생역학: 견관절 치환술에 대한 영향 (Biomechanics of the Glenohumeral Joint: Influence on Shoulder Arthroplasty)

  • 염재광
    • 대한견주관절학회:학술대회논문집
    • /
    • 대한견주관절학회 2004년도 연수강좌
    • /
    • pp.129-135
    • /
    • 2004
  • 만약 Glenoid side를 해부학적으로 정확하게 치환하고, 상완골측의 prosthesis를 삽입할 때 실제 골두의 크기와 같은 prosthetic head를 쓰고, humeral stem의 위치 및 높이를 정확하게 맞추어 삽입하여, humeral head component의 center와 glenoid component의 center가 일치되고 lateral glenohumeral offset이 정상에 가깝게 수술을 시행하면 인공 치환물로 대치된 glenohumeral joint가 정상에 가장 가까운 kinematics를 가질 수 있다 (당연한 얘기지만 이렇게 수술하려면 많은 경험이 필요). 따라서 Glenohumeral joint의 인공 관절 치환술은 항상 technique-dependant 수술이며, 아무리 좋은 치환물도 훌륭한 수술 기법보다 더 중요할 수는 없다.

  • PDF

Anatomic total shoulder arthroplasty with a nonspherical humeral head and inlay glenoid: 90-day complication profile in the inpatient versus outpatient setting

  • Andrew D. Posner;Michael C. Kuna;Jeremy D. Carroll;Eric M. Perloff;Matthew J. Anderson;Ian D. Hutchinson;Joseph P. Zimmerman
    • Clinics in Shoulder and Elbow
    • /
    • 제26권4호
    • /
    • pp.380-389
    • /
    • 2023
  • Background: Total shoulder arthroplasty (TSA) with a nonspherical humeral head component and inlay glenoid is a successful bone-preserving treatment for glenohumeral arthritis. This study aimed to describe the 90-day complication profile of TSA with this prosthesis and compare major and minor complication and readmission rates between inpatient- and outpatient-procedure patients. Methods: A retrospective review was performed of a consecutive cohort of patients undergoing TSA with a nonspherical humeral head and inlay glenoid in the inpatient and outpatient settings by a single surgeon between 2017 and 2022. Age, sex, body mass index, American Society of Anesthesiologists (ASA) score, Charlson Comorbidity Index (CCI), and 90-day complication and readmission rates were compared between inpatient and outpatient groups. Results: One hundred eighteen TSAs in 111 patients were identified. Mean age was 64.9 years (range, 39-90) and 65% of patients were male. Ninety-four (80%) and 24 (20%) patients underwent outpatient and inpatient procedures, respectively. Four complications (3.4%) were recorded: axillary nerve stretch injury, isolated ipsilateral arm deep venous thrombosis (DVT), ipsilateral arm DVT with pulmonary embolism requiring readmission, and gastrointestinal bleed requiring readmission. There were no reoperations or other complications. Outpatients were younger with lower ASA and CCI scores than inpatients; however, there was no difference in complications (1/24 vs. 3/94, P=1.00) or readmissions (1/24 vs. 1/94, P=0.37) between these two groups. Conclusions: TSA with a nonspherical humeral head and inlay glenoid can be performed safely in both inpatient and outpatient settings. Rates of early complications and readmissions were low with no difference according to surgical setting. Level of evidence: IV.

청소년기 야구 투수의 상완골 회전력: 소아 야구 견 및 상완골 후염의 발달에 미치는 영향 (Humeral Torque in Youth Baseball Pitchers: Implications for the Development of Little League Shoulder and Humeral Retroversion)

  • 김영규
    • 대한정형외과스포츠의학회지
    • /
    • 제2권1호
    • /
    • pp.62-70
    • /
    • 2003
  • 목적: 청소년기야구투수의견관절의운동학및동력학을통해소아야구견및상완골후염의발달에대한역학적측면을분석하고자하였다. 대상및방법: 모의 게임을통해 14명의청소년기야구투수에서관절운동학과상완골에작용하는총힘및회전력을계산하였다.결과: 상완골에작용하는주된힘은평균378$\pm$81N의장력으로공이손을 떠난 직후에정점을이루었다. 상완골에 작용하는 주된 회전력은 상완골의 장축에 대한 외 회전력으로 투구 동작의 약73$\%$ 시기에 정점을 나타냈으며 정점의 평균 회전력은 35.3$\pm$ 6.7Nm이었다. 이러한회전력은성인의상완골골절을발생시킬수있는회전력의약66$\%$이다. 결론: 상완골회전력은투구하는손의상완골후염의증가를발달시키는방향이었다. 따라서후기거상기동안의큰회전력으로부터발생되는 전단응력은상대적으로약한근위상완성장판에변형을초래할수있다. 또한투구중상완골에발생되어진외회전력은투구동작중성장판에작용하는회전응력이소아야구견을일으키는기전이될수있다는가설을뒷받침해준다.

  • PDF

Implant selection for successful reverse total shoulder arthroplasty

  • Joo Han Oh;Hyeon Jang Jeong;Yoo-Sun Won
    • Clinics in Shoulder and Elbow
    • /
    • 제26권1호
    • /
    • pp.93-106
    • /
    • 2023
  • Reverse total shoulder arthroplasty (RTSA) emerged as a new concept of arthroplasty that does not restore normal anatomy but does restore function. It enables the function of the torn rotator cuff to be performed by the deltoid and shows encouraging clinical outcomes. Since its introduction, various modifications have been designed to improve the outcome of the RTSA. From the original cemented baseplate with peg or keel, a cementless baseplate was designed that could be fixed with central and peripheral screws. In addition, a modular-type glenoid component enabled easier revision options. For the humeral component, the initial design was an inlay type of long stem with cemented fixation. However, loss of bone stock from the cemented stem hindered revision surgery. Therefore, a cementless design was introduced with a firm metaphyseal fixation. Furthermore, to prevent complications such as scapular notching, the concept of lateralization emerged. Lateralization helped to maintain normal shoulder contour and better rotator cuff function for improved external/internal rotation power, but excessive lateralization yielded problems such as subacromial notching. Therefore, for patients with pseudoparalysis or with risk of subacromial notching, a medial eccentric tray option can be used for distalization and reduced lateralization of the center of rotation. In summary, it is important that surgeons understand the characteristics of each implant in the various options for RTSA. Furthermore, through preoperative evaluation of patients, surgeons can choose the implant option that will lead to the best outcomes after RTSA.

Discovery Elbow System arthroplasty polyethylene bearing exchange: outcomes and experience

  • Daniel L J Morris;Katherine Walstow;Lisa Pitt;Marie Morgan;Amol A Tambe;David I Clark;Timothy Cresswell;Marius P Espag
    • Clinics in Shoulder and Elbow
    • /
    • 제27권1호
    • /
    • pp.18-25
    • /
    • 2024
  • Background: The Discovery Elbow System (DES) utilizes a polyethylene bearing within the ulnar component. An exchange bearing requires preoperative freezing and implantation within 2 minutes of freezer removal to allow insertion. We report our outcomes and experience using this technique. Methods: This was an analysis of a two-surgeon consecutive series of DES bearing exchange. Inclusion criteria included patients in which exchange was attempted with a minimum 1-year follow-up. Clinical and radiographic review was performed 1, 2, 3, 5, 8 and 10 years postoperative. Outcome measures included range of movement, Oxford Elbow Score (OES), Mayo Elbow Performance Score (MEPS), complications and requirement for revision surgery. Results: Eleven DESs in 10 patients were included. Indications were bearing wear encountered during humeral component revision (n=5); bearing failure (n=4); and infection treated with debridement, antibiotics and implant retention (DAIR; n=2). Bearing exchange was conducted on the first attempt in 10 cases. One case required a second attempt. One patient developed infection postoperatively managed with two-stage revision. Mean follow-up of the bearing exchange DES was 3 years. No further surgery was required, with no infection recurrence in DAIR cases. Mean elbow flexion-extension and pronosupination arcs were 107°(±22°) and 140° (±26°). Mean OES was 36/48 (±12) and MEPS was 83/100 (±19). Conclusions: Our results support the use of DES bearing exchange in cases of bearing wear with well-fixed stems or acute infection. This series provides surgeons managing DES arthroplasty with management principles, successful and reproducible surgical techniques and expected clinical outcomes in performing DES polyethylene bearing exchange. Level of evidence: IV.

수양명경근(手陽明經筋)의 해부학적(解剖學的) 고찰(考察) (Anatomy of Large Intestine Meridian Muscle in human)

  • 심영;박경식;이준무
    • Korean Journal of Acupuncture
    • /
    • 제19권1호
    • /
    • pp.15-23
    • /
    • 2002
  • This study was carried to identify the component of Large Intestine Meridian Muscle in human, dividing into outer, middle, and inner part. Brachium and antebrachium were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Large Intestine Meridian Muscle. We obtained the results as follows; 1. Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows. 1) Muscle; extensor digitorum tendon(LI-1), lumbrical tendon(LI-2), 1st dosal interosseous muscle(LI-3), 1st dosal interosseous muscle and adductor pollicis muscle(LI-4), extensor pollicis longus tendon and extensor pollicis brevis tendon(LI-5), adductor pollicis longus muscle and extensor carpi radialis brevis tendon(LI-6), extensor digitorum muscle and extensor carpi radialis brevis mucsle and abductor pollicis longus muscle(LI-7), extensor carpi radialis brevis muscle and pronator teres muscle(LI-8), extensor carpi radialis brevis muscle and supinator muscle(LI-9), extensor carpi radialis longus muscle and extensor carpi radialis brevis muscle and supinator muscle(LI-10), brachioradialis muscle(LI-11), triceps brachii muscle and brachioradialis muscle(LI-12), brachioradialis muscle and brachialis muscle(LI-13), deltoid muscle(LI-14, LI-15), trapezius muscle and supraspinous muscle(LI-16), platysma muscle and sternocleidomastoid muscle and scalenous muscle(LI-17, LI-18), orbicularis oris superior muscle(LI-19, LI-20) 2) Nerve; superficial branch of radial nerve and branch of median nerve(LI-1, LI-2, LI-3), superficial branch of radial nerve and branch of median nerve and branch of ulna nerve(LI-4), superficial branch of radial nerve(LI-5), branch of radial nerve(LI-6), posterior antebrachial cutaneous nerve and branch of radial nerve(LI-7), posterior antebrachial cutaneous nerve(LI-8), posterior antebrachial cutaneous nerve and radial nerve(LI-9, LI-12), lateral antebrachial cutaneous nerve and deep branch of radial nerve(LI-10), radial nerve(LI-11), lateral antebrachial cutaneous nerve and branch of radial nerve(LI-13), superior lateral cutaneous nerve and axillary nerve(LI-14), 1st thoracic nerve and suprascapular nerve and axillary nerve(LI-15), dosal rami of C4 and 1st thoracic nerve and suprascapular nerve(LI-16), transverse cervical nerve and supraclavicular nerve and phrenic nerve(LI-17), transverse cervical nerve and 2nd, 3rd cervical nerve and accessory nerve(LI-18), infraorbital nerve(LI-19), facial nerve and infraorbital nerve(LI-20). 3) Blood vessels; proper palmar digital artery(LI-1, LI-2), dorsal metacarpal artery and common palmar digital artery(LI-3), dorsal metacarpal artery and common palmar digital artery and branch of deep palmar aterial arch(LI-4), radial artery(LI-5), branch of posterior interosseous artery(LI-6, LI-7), radial recurrent artery(LI-11), cephalic vein and radial collateral artery(LI-13), cephalic vein and posterior circumflex humeral artery(LI-14), thoracoacromial artery and suprascapular artery and posterior circumflex humeral artery and anterior circumflex humeral artery(LI-15), transverse cervical artery and suprascapular artery(LI-16), transverse cervical artery(LI-17), SCM branch of external carotid artery(LI-18), facial artery(LI-19, LI-20)

  • PDF

견관절 인공관절 재치환술의 원인과 치료 (Etiology and Treatment of Revision Shoulder Arthroplasty)

  • 김영규;정규학
    • 대한정형외과학회지
    • /
    • 제54권2호
    • /
    • pp.100-109
    • /
    • 2019
  • 견관절 인공관절 성형술의 빈도가 빠른 속도로 증가함에 따라 일차적 인공관절 성형술과 관련된 다양한 형태의 합병증이 발생하고, 이로 인해 재치환술 역시 증가하고 있는 추세이다. 견관절 인공관절 재치환술은 여러 원인에 의해 발생되는 것으로 알려져 있는데 일차적 인공관절 성형술 후 나타난 회전근 개 파열, 관절와 상완 관절의 불안정성, 관절와 또는 상완골 치완물의 해리, 인공 치환물의 실패, 치환물 주위 골절, 감염 등이 있다. 재치환술은 술기적으로 어려운 과제이다. 실패한 견관절 인공관절 성형술은 해결할 수 있는 외과적 선택이 많지 않다. 특히 관절와 골 결손 또는 봉합 불가능한 회전근 개 파열이 있는 경우에는 더욱 어렵다. 또한 재치환술의 결과는 일차적 성형술의 결과에 비해 항상 좋지 않다. 결국 외과의는 수술을 결정하기 전에 일차적 인공관절 성형술이 실패한 원인을 잘 파악하여야 한다. 따라서 본 논문에서는 실패한 일차적 인공관절 성형술 후 재치환술의 적응증에 대해 살펴보고 실패의 원인에 따른 재치환술의 술기에 대해 논의하고자 한다.

수태양소장경근(手太陽小腸經筋)의 해부학적(解剖學的) 연구(硏究) (Anatomical study on The Arm Greater Yang Small Intestine Meridian Muscle in Human)

  • 박경식
    • 대한약침학회지
    • /
    • 제7권2호
    • /
    • pp.57-64
    • /
    • 2004
  • This study was carried to identify the component of Small Intestine Meridian Muscle in human, dividing the regional muscle group into outer, middle, and inner layer. the inner part of body surface were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Small Intestine Meridian Muscle. We obtained the results as follows; 1. Small Intestine Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows ; 1) Muscle ; Abd. digiti minimi muscle(SI-2, 3, 4), pisometacarpal lig.(SI-4), ext. retinaculum. ext. carpi ulnaris m. tendon.(SI-5, 6), ulnar collateral lig.(SI-5), ext. digiti minimi m. tendon(SI-6), ext. carpi ulnaris(SI-7), triceps brachii(SI-9), teres major(SI-9), deltoid(SI-10), infraspinatus(SI-10, 11), trapezius(Sl-12, 13, 14, 15), supraspinatus(SI-12, 13), lesser rhomboid(SI-14), erector spinae(SI-14, 15), levator scapular(SI-15), sternocleidomastoid(SI-16, 17), splenius capitis(SI-16), semispinalis capitis(SI-16), digasuicus(SI-17), zygomaticus major(Il-18), masseter(SI-18), auriculoris anterior(SI-19) 2) Nerve ; Dorsal branch of ulnar nerve(SI-1, 2, 3, 4, 5, 6), br. of mod. antebrachial cutaneous n.(SI-6, 7), br. of post. antebrachial cutaneous n.(SI-6,7), br. of radial n.(SI-7), ulnar n.(SI-8), br. of axillary n.(SI-9), radial n.(SI-9), subscapular n. br.(SI-9), cutaneous n. br. from C7, 8(SI-10, 14), suprascapular n.(SI-10, 11, 12, 13), intercostal n. br. from T2(SI-11), lat. supraclavicular n. br.(SI-12), intercostal n. br. from C8, T1(SI-12), accessory n. br.(SI-12, 13, 14, 15, 16, 17), intercostal n. br. from T1,2(SI-13), dorsal scapular n.(SI-14, 15), cutaneous n. br. from C6, C7(SI-15), transverse cervical n.(SI-16), lesser occipital n. & great auricular n. from cervical plexus(SI-16), cervical n. from C2,3(SI-16), fascial n. br.(SI-17), great auricular n. br.(SI-17), cervical n. br. from C2(SI-17), vagus n.(SI-17),hypoglossal n.(SI-17), glossopharyngeal n.(SI-17), sympathetic trunk(SI-17), zygomatic br. of fascial n.(SI-18), maxillary n. br.(SI-18), auriculotemporal n.(SI-19), temporal br. of fascial n.(SI-19) 3) Blood vessels ; Dorsal digital vein.(SI-1), dorsal br. of proper palmar digital artery(SI-1), br. of dorsal metacarpal a. & v.(SI-2, 3, 4), dorsal carpal br. of ulnar a.(SI-4, 5), post. interosseous a. br.(SI-6,7), post. ulnar recurrent a.(SI-8), circuirflex scapular a.(SI-9, 11) , post. circumflex humeral a. br.(SI-10), suprascapular a.(SI-10, 11, 12, 13), first intercostal a. br.(SI-12, 14), transverse cervical a. br.(SI-12,13,14,15), second intercostal a. br.(SI-13), dorsal scapular a. br.(SI-13, 14, 15), ext. jugular v.(SI-16, 17), occipital a. br.(SI-16), Ext. jugular v. br.(SI-17), post. auricular a.(SI-17), int. jugular v.(SI-17), int. carotid a.(SI-17), transverse fascial a. & v.(SI-18),maxillary a. br.(SI-18), superficial temporal a. & v.(SI-19).