• Title/Summary/Keyword: Humanoid robots

Search Result 102, Processing Time 0.032 seconds

Time-Delay Control for the Implementation of the Optimal Walking Trajectory of Humanoid Robot

  • Ahn, Doo Sung
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • Humanoid robots have fascinated many researchers since they appeared decades ago. For the requirement of both accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Humanoid robots are highly nonlinear, coupled, complex systems, accordingly the calculation of robot model is difficult and even impossible if precise model of the humanoid robots are unknown. Therefore, it is difficult to control using traditional model-based techniques. To realize model-free torque control, time-delay control (TDC) for humanoid robot was proposed with time-delay estimation technique. Using optimal walking trajectory obtained by particle swarm optimization, TDC with proposed scheme is implemented on whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the proposed TDC for humanoid robots.

Control of Humanoid Robots Using Time-Delay-Estimation and Fuzzy Logic Systems

  • Ahn, Doo Sung
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2020
  • For the requirement of accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Because of the complexity of humanoid robot dynamics, the TDC (time-delay control) is practical because it does not require a dynamic model. However, there occurs a considerable error due to discontinuous non-linearities. To solve this problem, the TDC-FLC (fuzzy logic compensator) is applied to humanoid robots. The applied controller contains three factors: a TDE (time-delay estimation) factor, a desired error dynamic factor, and FLC to suppress the TDE error. The TDC-FLC is easy to execute because it does not require complicated humanoid dynamic calculations and the heuristic fuzzy control rules are intuitive. TDC-FLC is implemented on the whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the TDC-FLC for humanoid robots.

Framework of a Cooperative Control Software for Heterogeneous Multiple Network Based Humanoid (이종 다수의 네트워크 기반 휴머노이드를 위한 협조제어 소프트웨어 프레임워크)

  • Lim, Heon-Young;Kang, Yeon-Sik;Lee, Joong-Jae;Kim, Jong-Won;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.226-236
    • /
    • 2008
  • In this paper, control software architecture is designed to enable a heterogeneous multiple humanoid robot demonstration executing tasks cooperating with each other. In the heterogeneous humanoid robot team, one large humanoid robot and two small humanoid robots are included. For the efficient and reliable information sharing between many software components for humanoid control, sensing and planning, CORBA based software framework is applied. The humanoid tasks are given in terms of finite state diagram based human-robot interface, which is interpreted into the XML based languages defining the details of the humanoid mission. A state transition is triggered based on the event which is described in terms of conditions on the sensor measurements such as robot locations and the external vision system. In the demonstration of the heterogeneous humanoid team, the task of multiple humanoid cleaning the table is given to the humanoid robots and successfully executed based on the given state diagram.

  • PDF

Evaluation Study of a Human-sized Bipedal Humanoid Robot Through a Public Demonstration in a Science Museum (과학관에서의 대중 시연을 통한 인간크기 이족보행 휴머노이드 로봇의 평가 연구)

  • Ahn, Tae-Beom;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.849-857
    • /
    • 2015
  • Although human-sized bipedal humanoid robots have been developed as the ideal form of human-friendly robots, studies of humanoid robots from the user perspective and of actual interaction between humanoid robots and the public in daily environments are few. This paper presents a long-term public demonstration that encouraged interaction between a humanoid robot and unspecified individuals. We have collected a significant amount of subjective evaluation data from the public by performing a storytelling demonstration that enhanced people's empathy towards the robot. The evaluation model consists of the robot's human friendliness, which involves its impression on humans, interaction with humans, and imitation of human motions and the robot's human appearance which involves gender, age, height, and body type. This study shows that there is no significant difference in human-friendliness between gender groups (male and female), while there is a significant difference between age groups (children and adults). In human appearance, it appears that there is no significant difference between either gender groups or age groups, except for the case of the robot's height.

CNN-based Fall Detection Model for Humanoid Robots (CNN 기반의 인간형 로봇의 낙상 판별 모델)

  • Shin-Woo Park;Hyun-Min Joe
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.18-23
    • /
    • 2024
  • Humanoid robots, designed to interact in human environments, require stable mobility to ensure safety. When a humanoid robot falls, it causes damage, breakdown, and potential harm to the robot. Therefore, fall detection is critical to preventing the robot from falling. Prevention of falling of a humanoid robot requires an operator controlling a crane. For efficient and safe walking control experiments, a system that can replace a crane operator is needed. To replace such a crane operator, it is essential to detect the falling conditions of humanoid robots. In this study, we propose falling detection methods using Convolution Neural Network (CNN) model. The image data of a humanoid robot are collected from various angles and environments. A large amount of data is collected by dividing video data into frames per second, and data augmentation techniques are used. The effectiveness of the proposed CNN model is verified by the experiments with the humanoid robot MAX-E1.

Fuzzy Footstep Planning for Humanoid Robots Using Locomotion Primitives (보행 프리미티브 기반 휴머노이드 로봇의 퍼지 보행 계획)

  • Kim, Yong-Tae;Noh, Su-Hee;Han, Nam-I
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.7-10
    • /
    • 2007
  • This paper presents a fuzzy footstep planner for humanoid robots in complex environments. First, we define locomotion primitives for humanoid robots. A global planner finds a global path from a navigation map that is generated based on a combination of 2.5 dimensional maps of the 3D workspace. A local planner searches for an optimal sequence of locomotion primitives along the global path by using fuzzy footstep planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

  • PDF

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

Evolutionary Generation of the Motions for Cooperative Work between Humanoid and Mobile Robot (휴머노이드와 모바일 로봇의 협조작업을 위한 진화적 동작 생성)

  • Jang, Jae-Young;Seo, Ki-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.107-113
    • /
    • 2010
  • In this paper, a prototype of cooperative work model for multi-robots system is introduced and the evolutionary approach is applied to generate the motions for the cooperative works of multi-robots system using genetic algorithm. The cooperative tasks can be performed by a humanoid robot and a mobile robot to deliver objects from shelves. Generation of the humanoid motions such as pick up, rotation, and place operation for the cooperative works are evolved. Modeling and computer simulation for the cooperative robots system are executed in Webots environments. Experimental results show the feasible and reasonable solutions for humanoid cooperative tasks are obtained.

Simulation Based for Intelligent Control System of Multi - Humanoid Robots for Stable Load Carrying (시뮬레이션에 기반한 휴머노이드 로봇 두 대의 안정적인 물체 운반 및 제어 연구)

  • Kim, Han-Guen;Kim, Hyung-Jean;Park, Won-Man;Kim, Yoon-Hyuk;Kim, Dong-Han;An, Jin-Ung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • This paper proposes an intelligent PID/Fuzzy control system for two humanoid robots to transport objects stably. When a robot transports an object while walking, a whole body system of a robot may not be stable due to vibration or external factors from a different departure speed error and a body movement of walking robots. Therefore, it is necessary to measure the horizontal and vertical locations and speeds of object, then calibrate the difference of departure speed between robots with PID/Fuzzy control. The results of simulation with two robots indicated that a proposed controller makes robots to transport an object stably.

A Study on The Implementation of Stable and High-speed Humanoid Robot (ICCAS 2004)

  • Kim, Seung-Woo;Jung, Yong-Rae;Jang, Kyung-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1440-1443
    • /
    • 2004
  • Most previous robots had used the wheels as means for movement. These structures were relatively simple and easy to control and this is why the method had been used until currently. However, there are many realistic problems to move from one place to another in human life, for instance, steps and edges. So we need to develop the two-legged walking humanoid robot. The 2-legged walking Robot system has been vigorously developed in so many corporations and academic circles of several countries. However, 2-legged walking Robot has been mostly studied in view of the static walk. We design a stable humanoid Robot which can walk in high-speed through the research of the dynamic walk in this paper. Especially, worldwide companies have been interested in developing humanoid robots for a long time to solve the before mentioned problems so that they can become more familiar with the human form. The most important thing, for the novel two-legged walk, is to create a stable and fast walking in two-legged robots. For realization of this movement, an optimal mechanical design of 12 DOFS, a distributed control and a parallel processing control are implemented in this paper. This paper proves that high speed and stable walking can be achieved, through experiments.

  • PDF