• Title/Summary/Keyword: Humanoid joint systems

Search Result 34, Processing Time 0.022 seconds

A Joint Motion Planning Based on a Bio-Mimetic Approach for Human-like Finger Motion

  • Kim Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Grasping and manipulation by hands can be considered as one of inevitable functions to achieve the performances desired in humanoid operations. When a humanoid robot manipulates an object by his hands, each finger should be well-controlled to accomplish a precise manipulation of the object grasped. So, the trajectory of each joint required for a precise finger motion is fundamentally necessary to be planned stably. In this sense, this paper proposes an effective joint motion planning method for humanoid fingers. The proposed method newly employs a bio-mimetic concept for joint motion planning. A suitable model that describes an interphalangeal coordination in a human finger is suggested and incorporated into the proposed joint motion planning method. The feature of the proposed method is illustrated by simulation results. As a result, the proposed method is useful for a facilitative finger motion. It can be applied to improve the control performance of humanoid fingers or prosthetic fingers.

An Interphalangeal Coordination-based Joint Motion Planning for Humanoid Fingers: Experimental Verification

  • Kim, Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.234-242
    • /
    • 2008
  • The purpose of this paper is to verify the practical effectiveness of an interphalangeal coordination-based joint motion planning method for humanoid finger operations. For the purpose, several experiments have been performed and comparative experimental results are shown. Through the experimental works, it is confirmed that according to the employed joint motion planning method, the joint configurations for a finger's trajectory can be planned stably or not, and consequently the actual joint torque command for controlling the finger can be made moderately or not. Finally, this paper analyzes that the interphalangeal coordination-based joint motion planning method is practically useful for implementing a stable finger manipulation. It is remarkably noted that the torque pattern by the method is well-balanced. Therefore, it is expected that the control performance of humanoid or prosthetic fingers can be enhanced by the method.

Improvement Trend of a Humanoid Robot Platform HUBO2+ (휴머노이드 로봇플랫폼 HUBO2+의 기술 개선 추이)

  • Lim, Jeongsoo;Heo, Jungwoo;Lee, Jungho;Bae, Hyoin;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.356-363
    • /
    • 2014
  • This paper covers improvement of the humanoid robot platform HUBO2, known as the HUBO2+. As a necessity of the growth of the humanoid platform, a robust, reliable and user friendly platform is needed. From this standpoint, HUBO2+ is the most improved humanoid robot platform in the HUBO series. The mechanical design has been changed to increase the movable range and to stop joint compulsion. Additionally, all of the electrical parts are re-designed to be un-breakable in an unexpected situation. A smart power controller with robot status check panel is attached on the back. Additionally, a diagnosis tool, the HUBO-i, has been developed. Moreover, each joint motor controller of HUBO2+ has a Protection Function and a PODO system is provided for handling the robot easily.

Adaptation of Motion Capture Data of Human Arms to a Humanoid Robot Using Optimization

  • Kim, Chang-Hwan;Kim, Do-Ik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2126-2131
    • /
    • 2005
  • Interactions of a humanoid with a human are important, when the humanoid is requested to provide people with human-friendly services in unknown or uncertain environment. Such interactions may require more complicated and human-like behaviors from the humanoid. In this work the arm motions of a human are discussed as the early stage of human motion imitation by a humanoid. A motion capture system is used to obtain human-friendly arm motions as references. However the captured motions may not be applied directly to the humanoid, since the differences in geometric or dynamics aspects as length, mass, degrees of freedom, and kinematics and dynamics capabilities exist between the humanoid and the human. To overcome this difficulty a method to adapt captured motions to a humanoid is developed. The geometric difference in the arm length is resolved by scaling the arm length of the humanoid with a constant. Using the scaled geometry of the humanoid the imitation of actor's arm motions is achieved by solving an inverse kinematics problem formulated using optimization. The errors between the captured trajectories of actor arms and the approximated trajectories of humanoid arms are minimized. Such dynamics capabilities of the joint motors as limits of joint position, velocity and acceleration are also imposed on the optimization problem. Two motions of one hand waiving and performing a statement in sign language are imitated by a humanoid through dynamics simulation.

  • PDF

Biped Walking of Hydraulic Humanoid Robot on Inclined Floors (유압식 이족 휴머노이드 로봇의 경사면 보행 연구)

  • Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.258-266
    • /
    • 2012
  • This paper describes a biped walking algorithm for a hydraulic humanoid robot on inclined floors. To realize stable and robust biped walking, the walking algorithm was divided into five control strategies. The first is a joint position control strategy. This strategy is for tracking desired joint position trajectories with a gain switching. The second is a multi-model based ZMP (Zero Moment Point) control strategy for dynamic balance. The third is a walking pattern flow control strategy for smooth transition from step to step. The fourth is an ankle compliance control, which increases the dynamic stability at the moment of floor contact. The last is an upright pose control strategy for robust walking on an inclined floor. All strategies are based on simple pendulum models and include practical sensory feedback in order to implement the strategies on a physical robot. Finally, the performance of the control strategies are evaluated and verified through dynamic simulations of a hydraulic humanoid on level and inclined floors.

A Study on the Joint Controller for a Humanoid Robot based on Genetic Algorithm (유전 알고리즘을 이용한 휴머노이드 로봇의 관절 제어기에 관한 연구)

  • Kong, Jung-Shik;Kim, Jin-Geol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.640-647
    • /
    • 2007
  • This paper presents a joint controller for a humanoid robot based on genetic algorithm. h humanoid robot has basically instability during walking because it isn't fixed on the ground. Moreover nonlinearities of the joints increase its instability. If one of them isn't satisfied, the robot may fall down at the ground during walking. To attack one of those problems, joint controller is proposed. It can perform tracking control preciously and reduce the effect of nonlinearities by gear, limitation of the input voltage, coulomb friction and so on. This controller is based on fuzzy-sliding mode controller (FSMC) and compensator and control gains are searched by a proposed genetic algorithm. It can reduce the effect by nonlinearities. Also, to improve the tracking performance, the proposed controller has motion controller. From the given controller, a humanoid robot can moved more preciously. Here, all the processes are investigated through simulations and it is verified experimentally in a real joint system for a humanoid robot.

Joint Position Control using ZMP-Based Gain Switching Algorithm for a Hydraulic Biped Humanoid Robot (유압식 이족 휴머노이드 로봇의 ZMP 기반 게인 스위칭 알고리즘을 이용한 관절 위치 제어)

  • Kim, Jung-Yup;Hodgins, Jessica K.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1029-1038
    • /
    • 2009
  • This paper proposes a gain switching algorithm for joint position control of a hydraulic humanoid robot. Accurate position control of the lower body is one of the basic requirements for robust balance and walking control. Joint position control is more difficult for hydraulic robots than it is for electric robots because of an absence of reduction gear and better back-drivability of hydraulic joints. Backdrivability causes external forces and torques to have a large effect on the position of the joints. External ground reaction forces therefore prevent a simple proportional-derivative (PD) controller from realizing accurate and fast joint position control. We propose a state feedback controller for joint position control of the lower body, define three modes of state feedback gains, and switch the gains according to the Zero Moment Point (ZMP) and linear interpolation. Dynamic equations of hydraulic actuators were experimentally derived and applied to a robot simulator. Finally, the performance of the algorithm is evaluated with dynamic simulations.

Implementation and Experimentation of Tracking Control of a Moving Object for Humanoid Robot Arms ROBOKER by Stereo Vision (스테레오 비전정보를 사용한 휴머노이드 로봇 팔 ROBOKER의 동적 물체 추종제어 구현 및 실험)

  • Lee, Woon-Kyu;Kim, Dong-Min;Choi, Ho-Jin;Kim, Jeong-Seob;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.998-1004
    • /
    • 2008
  • In this paper, a visual servoing control technique of humanoid robot arms is implemented for tracking a moving object. An embedded time-delayed controller is designed on an FPGA(Programmable field gate array) chip and implemented to control humanoid robot arms. The position of the moving object is detected by a stereo vision camera and converted to joint commands through the inverse kinematics. Then the robot arm performs visual servoing control to track a moving object in real time fashion. Experimental studies are conducted and results demonstrate the feasibility of the visual feedback control method for a moving object tracking task by the humanoid robot arms called the ROBOKER.

Study on the Real-Time Walking Control of a Humanoid Robot U sing Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Eung-Hyuk;Lee, Bo-Hee;Kim, Jin-Geol
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.551-558
    • /
    • 2008
  • This paper deals with the real-time stable walking for a humanoid robot, ISHURO-II, on uneven terrain. A humanoid robot necessitates achieving posture stabilization since it has basic problems such as structural instability. In this paper, a stabilization algorithm is proposed using the ground reaction forces, which are measured using FSR (Force Sensing Resistor) sensors during walking, and the ground conditions are estimated from these data. From this information the robot selects the proper motion pattern and overcomes ground irregularities effectively. In order to generate the proper reaction under the various ground situations, a fuzzy algorithm is applied in finding the proper angle of the joint. The performance of the proposed algorithm is verified by simulation and walking experiments on a 24-DOFs humanoid robot, ISHURO-II.

Generation of Motor Velocity Profile for Walking-Assistance System Using Humanoid Robot Model (휴머노이드 로봇 모델을 이용한 보행재활 훈련장치의 견인모터 속도 파형 생성)

  • Choi, Young-Lim;Choi, Nak-Yoon;Park, Sang-Il;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.631-638
    • /
    • 2012
  • This work proposes a new method to generate velocity profile of a traction motor equipped in a rehabilitation system for knee joint patients through humanoid robot simulation. To this end, a three-dimensional full-body humanoid robot model is newly constructed, and natural human gait is simulated by applying to it reference joint angle trajectories already published. Linear velocity is derived from distance data calculated between the positions of a thigh band and its traction motor at every sampling instance, which is a novel idea of this paper. The projection rule is employed to kinematically describe the humanoid robot because of its high efficiency and accuracy, and measured joint trajectories are used in simulating human natural gait referring to Winter's book. The attained motor velocity profile for a certain position in human body will be applied to our walking-assistance system which is implemented with a treadmill system.