• 제목/요약/키워드: HumanPose

검색결과 349건 처리시간 0.022초

2.5D human pose estimation for shadow puppet animation

  • Liu, Shiguang;Hua, Guoguang;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2042-2059
    • /
    • 2019
  • Digital shadow puppet has traditionally relied on expensive motion capture equipments and complex design. In this paper, a low-cost driven technique is presented, that captures human pose estimation data with simple camera from real scenarios, and use them to drive virtual Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process of the following transformation, we treat the depth feature as an implicit feature, and map body joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 2.5D pose data can not better control the shadow puppet directly, due to the difference in motion pattern and composition structure between real pose and shadow puppet. To this end, the 2.5D pose data transformation is carried out in the implicit pose mapping space based on self-network and the final 2.5D pose expression data is produced for animating shadow puppets. Experimental results have demonstrated the effectiveness of our new method.

그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식 (Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking)

  • 오치민;;김민욱;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.186-192
    • /
    • 2009
  • 본 논문은 비전을 이용한 인간 정면 상반신 포즈를 인식 방법에 대해서 기술한다. 일반적으로 HCI(Human Computer Interaction)와 HRI(Human Robot Interaction)에서는 인간이 정면을 바라볼 때 얼굴, 손짓으로 의사소통 하는 경우가 많기 때문에 본 논문에서는 인식의 범위를 인간의 정면 그리고 상반신에 대해서만 한정한다. 인간 포즈인식의 주요 두 가지 어려움은 첫째 인간은 다양한 관절로 이루어진 객체이기 때문에 포즈의 자유도가 높은 문제점 때문에 모델링이 어렵다는 것이다. 둘째는 모델링된 정보와 영상과의 매칭이 어려운 것이다. 이를 해결하기 위해 본 논문에서는 모델링이 쉬운 그림모델(Pictorial Model)을 이용해 인체를 다수 사각형 파트로 모델링 하였고 이를 이용해 주요한 상반신 포즈를 DB화 해 인식한다. DB 포즈로 표현되지 못하는 세부포즈는 인식된 주요 포즈 파라미터로 부터 파티클필터를 이용해 예측한 다수 파티클로부터 가장 높은 사후분포를 갖는 파티클을 찾아 주요 포즈를 업데이트하여 결정한다. 따라서 주요한 포즈 인식과 이를 기반으로 한 세부 포즈를 추적하는 두 단계를 통해 인체 정면 상반신 포즈를 정확하게 인식 할 수 있다.

  • PDF

Robust 2D human upper-body pose estimation with fully convolutional network

  • Lee, Seunghee;Koo, Jungmo;Kim, Jinki;Myung, Hyun
    • Advances in robotics research
    • /
    • 제2권2호
    • /
    • pp.129-140
    • /
    • 2018
  • With the increasing demand for the development of human pose estimation, such as human-computer interaction and human activity recognition, there have been numerous approaches to detect the 2D poses of people in images more efficiently. Despite many years of human pose estimation research, the estimation of human poses with images remains difficult to produce satisfactory results. In this study, we propose a robust 2D human body pose estimation method using an RGB camera sensor. Our pose estimation method is efficient and cost-effective since the use of RGB camera sensor is economically beneficial compared to more commonly used high-priced sensors. For the estimation of upper-body joint positions, semantic segmentation with a fully convolutional network was exploited. From acquired RGB images, joint heatmaps accurately estimate the coordinates of the location of each joint. The network architecture was designed to learn and detect the locations of joints via the sequential prediction processing method. Our proposed method was tested and validated for efficient estimation of the human upper-body pose. The obtained results reveal the potential of a simple RGB camera sensor for human pose estimation applications.

3차원 인체 포즈 인식을 이용한 상호작용 게임 콘텐츠 개발 (Developing Interactive Game Contents using 3D Human Pose Recognition)

  • 최윤지;박재완;송대현;이칠우
    • 한국콘텐츠학회논문지
    • /
    • 제11권12호
    • /
    • pp.619-628
    • /
    • 2011
  • 일반적으로 비전기반 3차원 인체 포즈 인식 기술은 HCI(Human-Computer Interaction)에서 인간의 제스처를 전달하기 위한 방법으로 사용된다. 특수한 환경에서 단순한 2차원 움직임 포즈만 인식할 수 있는 2차원 포즈모델 기반 인식 방법에 비해 3차원 관절을 묘사한 포즈모델은 관절각에 대한 정보와 신체 부위의 모양정보를 선행지식으로 사용할 수 있어서 좀 더 일반적인 환경에서 복잡한 3차원 포즈도 인식할 수 있다는 장점이 있다. 이 논문은 인체의 3차원 관절 정보를 이용한 포즈 인식 기술을 인터페이스로 활용한 상호작용 게임 콘텐츠 개발에 관해 기술한다. 제안된 시스템에서 사용되는 포즈는 인체 관절 중 14개 관절의 3차원 위치정보를 이용해서 구성한 포즈 템플릿과 현재 사용자의 포즈를 비교해 인식된다. 이 방법을 이용하여 제작된 시스템은 사용자가 부가적인 장치의 사용 없이 사용자의 몸동작만으로 자연스럽게 게임 콘텐츠를 조작할 수 있도록 해준다. 제안된 3차원 인식 기술을 게임 콘텐츠에 적용하여 성능을 평가한다. 향후 다양한 환경에서 더욱 강건하게 포즈를 인식할 수 있는 연구를 수행할 계획이다.

A Distributed Real-time 3D Pose Estimation Framework based on Asynchronous Multiviews

  • Taemin, Hwang;Jieun, Kim;Minjoon, Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.559-575
    • /
    • 2023
  • 3D human pose estimation is widely applied in various fields, including action recognition, sports analysis, and human-computer interaction. 3D human pose estimation has achieved significant progress with the introduction of convolutional neural network (CNN). Recently, several researches have proposed the use of multiview approaches to avoid occlusions in single-view approaches. However, as the number of cameras increases, a 3D pose estimation system relying on a CNN may lack in computational resources. In addition, when a single host system uses multiple cameras, the data transition speed becomes inadequate owing to bandwidth limitations. To address this problem, we propose a distributed real-time 3D pose estimation framework based on asynchronous multiple cameras. The proposed framework comprises a central server and multiple edge devices. Each multiple-edge device estimates a 2D human pose from its view and sendsit to the central server. Subsequently, the central server synchronizes the received 2D human pose data based on the timestamps. Finally, the central server reconstructs a 3D human pose using geometrical triangulation. We demonstrate that the proposed framework increases the percentage of detected joints and successfully estimates 3D human poses in real-time.

Multi-resolution Fusion Network for Human Pose Estimation in Low-resolution Images

  • Kim, Boeun;Choo, YeonSeung;Jeong, Hea In;Kim, Chung-Il;Shin, Saim;Kim, Jungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2328-2344
    • /
    • 2022
  • 2D human pose estimation still faces difficulty in low-resolution images. Most existing top-down approaches scale up the target human bonding box images to the large size and insert the scaled image into the network. Due to up-sampling, artifacts occur in the low-resolution target images, and the degraded images adversely affect the accurate estimation of the joint positions. To address this issue, we propose a multi-resolution input feature fusion network for human pose estimation. Specifically, the bounding box image of the target human is rescaled to multiple input images of various sizes, and the features extracted from the multiple images are fused in the network. Moreover, we introduce a guiding channel which induces the multi-resolution input features to alternatively affect the network according to the resolution of the target image. We conduct experiments on MS COCO dataset which is a representative dataset for 2D human pose estimation, where our method achieves superior performance compared to the strong baseline HRNet and the previous state-of-the-art methods.

Empirical Comparison of Deep Learning Networks on Backbone Method of Human Pose Estimation

  • Rim, Beanbonyka;Kim, Junseob;Choi, Yoo-Joo;Hong, Min
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.21-29
    • /
    • 2020
  • Accurate estimation of human pose relies on backbone method in which its role is to extract feature map. Up to dated, the method of backbone feature extraction is conducted by the plain convolutional neural networks named by CNN and the residual neural networks named by Resnet, both of which have various architectures and performances. The CNN family network such as VGG which is well-known as a multiple stacked hidden layers architecture of deep learning methods, is base and simple while Resnet which is a bottleneck layers architecture yields fewer parameters and outperform. They have achieved inspired results as a backbone network in human pose estimation. However, they were used then followed by different pose estimation networks named by pose parsing module. Therefore, in this paper, we present a comparison between the plain CNN family network (VGG) and bottleneck network (Resnet) as a backbone method in the same pose parsing module. We investigate their performances such as number of parameters, loss score, precision and recall. We experiment them in the bottom-up method of human pose estimation system by adapted the pose parsing module of openpose. Our experimental results show that the backbone method using VGG network outperforms the Resent network with fewer parameter, lower loss score and higher accuracy of precision and recall.

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

A Spatial-Temporal Three-Dimensional Human Pose Reconstruction Framework

  • Nguyen, Xuan Thanh;Ngo, Thi Duyen;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.399-409
    • /
    • 2019
  • Three-dimensional (3D) human pose reconstruction from single-view image is a difficult and challenging topic. Existing approaches mostly process frame-by-frame independently while inter-frames are highly correlated in a sequence. In contrast, we introduce a novel spatial-temporal 3D human pose reconstruction framework that leverages both intra and inter-frame relationships in consecutive 2D pose sequences. Orthogonal matching pursuit (OMP) algorithm, pre-trained pose-angle limits and temporal models have been implemented. Several quantitative comparisons between our proposed framework and recent works have been studied on CMU motion capture dataset and Vietnamese traditional dance sequences. Our framework outperforms others by 10% lower of Euclidean reconstruction error and more robust against Gaussian noise. Additionally, it is also important to mention that our reconstructed 3D pose sequences are more natural and smoother than others.

단일 이미지에 기반을 둔 사람의 포즈 추정에 대한 연구 동향 (Recent Trends in Human Pose Estimation Based on a Single Image)

  • 조정찬
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제15권5호
    • /
    • pp.31-42
    • /
    • 2019
  • 최근 딥러닝 기술이 발전함에 따라 많은 컴퓨터 비전 연구 분야에서 주목할 만한 성과들이 지속적으로 나오고 있다. 단일 이미지를 기반으로 사람의 2차원 및 3차원 포즈를 추정하는 연구에서도 비약적인 성능향상을 보여주고 있으며, 많은 연구자들이 문제의 범위를 확장하며 활발한 연구 활동을 진행하고 있다. 사람의 포즈 추정은 다양한 응용 분야가 존재하고, 특히 이미지나 비디오 분석에서 사람의 포즈는 행동 및 상태, 의도 파악을 위한 핵심 요소가 되기 때문에 상당히 중요한 연구 분야이다. 이러한 배경에 따라 본 논문은 단일 이미지를 기반으로 한 사람의 포즈 추정 기술에 대한 연구 동향을 살펴보고자 한다. 강인하고 정확한 문제 해결을 위해 다양한 연구 활동 결과가 존재한다는 점에서 본 논문에서는 사람의 포즈 추정 연구를 2차원 및 3차원 포즈 추정에 대해서 나누어 살펴보고자 한다. 끝으로 연구에 필요한 데이터 세트 및 사람의 포즈 추정 기술을 적용하는 다양한 연구 사례를 살펴볼 것이다.