• Title/Summary/Keyword: Human-robot interface

Search Result 150, Processing Time 0.032 seconds

Implementation of Human Motion Following Robot through Wireless Communication Interface

  • Choi, Hyoukryeol;Jung, Kwangmok;Ryew, SungMoo;Kim, Hunmo;Jeon, Jaewook;Nam, Jaedo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.36.3-36
    • /
    • 2002
  • $\textbullet$ Motion capture system $\textbullet$ Exoskeleton mechanism $\textbullet$ Kinematics analysis $\textbullet$ Man-machine Interface $\textbullet$ Wireless communication $\textbullet$ Control algorithm

  • PDF

A Study on a Geometrical Analysis for the Manual Mode of an Advanced Teleoperator System (지적 원격조작시스템의 수동모드 개선을 위한 기하학적 해석에 관한 연구)

  • Lee, Sun-Yo;Kim, Chang-Dae;Park, Se-Gwon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.31-44
    • /
    • 1988
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment then the automatic mode changes into the manual mode. The operation by the control program and the operation by a human recover the error in the manual mode. The system resumes the automatic mode and continues the given task. It is necessary to improve the manual mode in order to make the best use of a man-robot system, as a part of the human interface technique. Therefore, the error recovery task is performed by combining the operation by the control program representing autonomy of a robot and the operation by a human representing versatility of a human operator effectively in the view point of human factors engineering. The geometric inverse kinematics is used for the calculation of the robot joint values in the operation by the control program. The singularity operation error and the parameter operation error often occur in this procedure. These two operation errors increase the movement time of the robot and the coordinate reading time, during the error recovery task. A singularity algorithm, parameter algorithm and fuzzy control are studied so as to remove the disadvantages of geometric inverse kinematics. And the geometric straight line motion is studied so as to improve the disadvantages of the operation by a human.

  • PDF

Design of a Virtual Walking Machine for Virtural Reality Interface (가상현실 대화용 가상걸음 장치의 설계)

  • 윤정원;류제하
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1044-1051
    • /
    • 2004
  • This paper described a novel locomotion interface that can generate infinite floor for various surface, named as virtual walking machine. This interface allows users to participate in a life-like walking experience in virtual environments, which include various terrains such as plains, slopes and stair ground surfaces. The interface is composed of two three-DOF (X, Y, Yaw) planar devices and two four-DOF (Pitch, Roll, Z, and relative rotation) footpads. The planar devices are driven by AC servomotors for generating fast motions, while the footpad devices are driven by pneumatic actuators for continuous support of human weight. To simulate natural human walking, the locomotion interface design specification are acquired based on gait analysis and each mechanism is optimally designed and manufactured to satisfy the given requirements. The designed locomotion interface allows natural walking(step: 0.8m, height: 20cm, load capability: 100kg, slope:30deg) for various terrains.

Development of the Underwater Cleaning Robot Platform for a Higher Efficiency (고효율 수중청소로봇 플랫폼 기술 개발)

  • Suh, Jin-Ho;Lee, Jung-Woo;Kim, Jong-Geol;Choi, Young-Ho;Choi, Il-Seop
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.74-84
    • /
    • 2017
  • This paper presents the development of the underwater cleaning robot platform for a higher efficiency in manufacturing industry. Human operators directly go into the cistern and clean sludge after drainage of the water so far. It is sometimes dangerous because of the harmful chemical materials from the product making process. In addition, it takes long time for water drainage and supplying it back. However, the robot cleaning operation does not need to drain water so that it could be applied to the sludge cleaning work at any time without the plant pause. Moreover, it can prevent the safety accidents because human operators are not necessary to enter directly the sludge cisterns. This paper shows the performance of cleaning work that can be applied in the industrial field through the design and development of underwater cleaning robot platform. And these results demonstrate that the developed underwater cleaning robot has great possibilities to clean other industrial water cisterns.

Speech Emotion Recognition on a Simulated Intelligent Robot (모의 지능로봇에서의 음성 감정인식)

  • Jang Kwang-Dong;Kim Nam;Kwon Oh-Wook
    • MALSORI
    • /
    • no.56
    • /
    • pp.173-183
    • /
    • 2005
  • We propose a speech emotion recognition method for affective human-robot interface. In the Proposed method, emotion is classified into 6 classes: Angry, bored, happy, neutral, sad and surprised. Features for an input utterance are extracted from statistics of phonetic and prosodic information. Phonetic information includes log energy, shimmer, formant frequencies, and Teager energy; Prosodic information includes Pitch, jitter, duration, and rate of speech. Finally a pattern classifier based on Gaussian support vector machines decides the emotion class of the utterance. We record speech commands and dialogs uttered at 2m away from microphones in 5 different directions. Experimental results show that the proposed method yields $48\%$ classification accuracy while human classifiers give $71\%$ accuracy.

  • PDF

Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM (FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.562-567
    • /
    • 2009
  • As a key mechanism of the human emotion interaction, Facial Expression is a powerful tools in HRI(Human Robot Interface) such as Human Computer Interface. By using a facial expression, we can bring out various reaction correspond to emotional state of user in HCI(Human Computer Interaction). Also it can infer that suitable services to supply user from service agents such as intelligent robot. In this article, We addresses the issue of expressive face modeling using an advanced active appearance model for facial emotion recognition. We consider the six universal emotional categories that are defined by Ekman. In human face, emotions are most widely represented with eyes and mouth expression. If we want to recognize the human's emotion from this facial image, we need to extract feature points such as Action Unit(AU) of Ekman. Active Appearance Model (AAM) is one of the commonly used methods for facial feature extraction and it can be applied to construct AU. Regarding the traditional AAM depends on the setting of the initial parameters of the model and this paper introduces a facial emotion recognizing method based on which is combined Advanced AAM with Bayesian Network. Firstly, we obtain the reconstructive parameters of the new gray-scale image by sample-based learning and use them to reconstruct the shape and texture of the new image and calculate the initial parameters of the AAM by the reconstructed facial model. Then reduce the distance error between the model and the target contour by adjusting the parameters of the model. Finally get the model which is matched with the facial feature outline after several iterations and use them to recognize the facial emotion by using Bayesian Network.

A study on an error recovery expert system as a part of man-robot system (Man-robot system의 일환으로서 에러회복 전문가시스템에 관한 연구)

  • 이순요;김창대
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.518-523
    • /
    • 1988
  • A Teaching and Operating Expert System (TOES) was designed in order to perform a task effectively which is inaccessible to man. Once an error occurs in the middle of the task operation, the automatic mode is converted into a manual mode. After recovering the error by the manual mode, the manual mode should be converted into the automatic mode. It was necessary to improve the manual mode in order to increase the availability of a man-robot system, a part of the human interface technique. Therefore, the Error Recovery Expert System must be constructed and developed.

  • PDF

A Study on The OLP Development and Controller Design for off-line Control of SCARA Robot (스카라 로봇의 오프라인 제어를 위한 OLP 개발 및 제어기설계에 관한 연구)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.432-439
    • /
    • 1999
  • In this paper, an off-line programming(OLP) system is presented as the three dimensional graphic simulator and one of the human-robot interface systems for industrial robots. The OLP system has been especially developed to testify robot programs visually using three dimensional geometric modeling and graphics technologies in personal computes. A special feature is its capability of collision detection and of comparing performance of control algorithms. This paper places the focus on the structure and major characteristic of OLP system.

  • PDF

Development of Graphic interface for Biped walking robot (이족 보행 로봇의 그래픽 인터페이스 개발)

  • 김영식;전대원;최형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.507-510
    • /
    • 2002
  • We developed a human-sized BWR(biped walking robot) named KUBIRI driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIRI was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize informations on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interfacer was developed based on the open inventor tool. Through the graphic interfacer, the control input of KUBIRI is performed.

  • PDF