• Title/Summary/Keyword: Human-robot interface

Search Result 150, Processing Time 0.026 seconds

Comprehensive architecture for intelligent adaptive interface in the field of single-human multiple-robot interaction

  • Ilbeygi, Mahdi;Kangavari, Mohammad Reza
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.483-498
    • /
    • 2018
  • Nowadays, with progresses in robotic science, the design and implementation of a mechanism for human-robot interaction with a low workload is inevitable. One notable challenge in this field is the interaction between a single human and a group of robots. Therefore, we propose a new comprehensive framework for single-human multiple-robot remote interaction that can form an efficient intelligent adaptive interaction (IAI). Our interaction system can thoroughly adapt itself to changes in interaction context and user states. Some advantages of our devised IAI framework are lower workload, higher level of situation awareness, and efficient interaction. In this paper, we introduce a new IAI architecture as our comprehensive mechanism. In order to practically examine the architecture, we implemented our proposed IAI to control a group of unmanned aerial vehicles (UAVs) under different scenarios. The results show that our devised IAI framework can effectively reduce human workload and the level of situation awareness, and concurrently foster the mission completion percentage of the UAVs.

Experimental Application of Robot Operability Simulator (ROSim) to the Operability Assessment of Military Robots (로봇 운용성 시뮬레이터(ROSim)의 군사로봇 운용성 평가에 실험적 적용 연구)

  • Choi, Sangyeong;Park, Woosung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • Military robots are expected to play an important role in the future battlefield, and will be actively engaged in dangerous, repetitive and difficult tasks. During the robots perform the tasks a human operator controls the robots in a supervisory way. The operator recognizes battlefield situations from remote robots through an interface of the operator control center, and controls them. In the meantime, operator workload, controller interface, robot automation level, and task complexity affect robot operability. In order to assess the robot operability, we have developed ROSim (Robot Operational Simulator) incorporating these operational factors. In this paper, we introduce the results of applying ROSim experimentally to the assessment of reconnaissance robot operability in a battle field. This experimental assessment shows three resulting measurements: operational control workload, operational control capability, mission success rate, and discuss its applicability to the defense robot research and development. It is expected that ROSim can contribute to the design of an operator control center and the design analysis of a human-robot team in the defense robot research and development.

Development of Videophone-based Application Services for KT Mon-e(KT Edutainment Robot for Young Children) (KT 몽이(유아용 에듀테인먼트 로봇)의 영상전화 기반 응용 서비스 개발)

  • Park, Kui-Hong;Kim, Jong-Cheol;Ahn, Hee-June
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.93-101
    • /
    • 2010
  • This paper presents the system design and implementation of 'Mon-e', the KT's edutainment robot for young children. We paid our special attention to the computer- illiterate young children, and the provision of the physical and friendly human interface of robots. Specifically, the paper focuses on the video telephony and home monitoring service using the Mon-e robot. RFID cards -based calling makes it possible for the computer-illiterate children to make a phone call to their parents. The SIP and DTMF based remote control of the robot enables the search and track of the children. This experimental development shows the potentialities and values of the convergence service of telecommunication and robotics.

Teleoperated Control of a Mobile Robot Using an Exoskeleton-Type Motion Capturing Device Through Wireless Communication (Exoskeleton 형태의 모션 캡쳐 장치를 이용한 이동로봇의 원격 제어)

  • Jeon, Poong-Woo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.434-441
    • /
    • 2004
  • In this paper, an exoskeleton-type motion capturing system is designed and implemented. The device is designed to have 12 degree-of-freedom entirely to represent human arm motions. Forward and inverse kinematics of the device are analyzed to make sure of its singular positions. With the designed model parameters, simulation studies are conducted to verify that the designed motion capturing system is effective to represent human motions within the workspace. As a counterpart of the exoskeleton system, a mobile robot is built to follow human motion restrictively. Experimental studies of teleoperation from the exoskeleton device to control the mobile robot are carried out to show feasible application of wireless man-machine interface.

Development of Autonomous Biped Walking Robot (자립형 이족 보행 로봇의 개발)

  • Kim, Y.S.;Oh, J.M.;Baik, C.Y.;Woo, J.J.;Choi, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.805-809
    • /
    • 2003
  • We developed a human-sized BWR(biped walking robot) named KUBIR1 driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIR1 was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize the information on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interface was developed based on the OpenGL tool. Through the graphic interface, the control input of KUBIR1 is performed.

  • PDF

Immersive user interfaces for visual telepresence in human-robot interaction (사람과 로봇간 원격작동을 위한 몰입형 사용자 인터페이스)

  • Jang, Su-Hyeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.406-410
    • /
    • 2009
  • As studies on more realistic human-robot interface are being actively carried out, people's interests about telepresence which remotely controls robot and obtains environmental information through video display are increasing. In order to provide natural telepresence services by moving a remote robot, it is required to recognize user's behaviors. The recognition of user movements used in previous telepresence system was difficult and costly to be implemented, limited in its applications to human-robot interaction. In this paper, using the Nintendo's Wii controller getting a lot of attention in these days and infrared LEDs, we propose an immersive user interface that easily recognizes user's position and gaze direction and provides remote video information through HMD.

  • PDF

User Interfaces for Visual Telepresence in Human-Robot Interaction Using Wii Controller (WII 컨트롤러를 이용한 사람과 로봇간 원격작동 사용자 인터페이스)

  • Jang, Su-Hyung;Yoon, Jong-Won;Cho, Sung-Bae
    • Journal of the HCI Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • As studies on more realistic human-robot interface are being actively carried out, people's interests about telepresence which remotely controls robot and obtains environmental information through video display are increasing. In order to provide natural telepresence services by moving a remote robot, it is required to recognize user's behaviors. The recognition of user movements used in previous telepresence system was difficult and costly to be implemented, limited in its applications to human-robot interaction. In this paper, using the Nintendo's Wii controller getting a lot of attention in these days and infrared LEDs, we propose an immersive user interface that easily recognizes user's position and gaze direction and provides remote video information through HMD.

  • PDF

Robust Control of a Haptic Interface Using LQG/LTR (LQG/LTR을 이용한 Haptic Interface의 강인제어)

  • Lee, Sang-Cheol;Park, Heon;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.757-763
    • /
    • 2002
  • A newly designed haptic interface enables an operator to control a remote robot precisely. It transmits position information to the remote robot and feeds back the interaction force from it. A control algorithm of haptic interface has been studied to improve the robustness and stability to uncertain dynamic environments with a proposed contact dynamic model that incorporates human hand dynamics. A simplified hybrid parallel robot dynamic model fur a 6 DOF haptic device was proposed to from a real time control system, which does not include nonlinear components. LQC/LTR scheme was adopted in this paper for the compensation of un-modeled dynamics. The recovery of the farce from the remote robot at the haptic interface was demonstrated through the experiments.

Development of TTS for a Human-Robot Interface (휴먼-로봇 인터페이스를 위한 TTS의 개발)

  • Bae Jae-Hyun;Oh Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2006.05a
    • /
    • pp.135-138
    • /
    • 2006
  • The communication method between human and robot is one of the important parts for a human-robot interaction. And speech is easy and intuitive communication method for human-being. By using speech as a communication method for robot, we can use robot as familiar way. In this paper, we developed TTS for human-robot interaction. Synthesis algorithms were modified for an efficient utilization of restricted resource in robot. And synthesis database were reconstructed for an efficiency. As a result, we could reduce the computation time with slight degradation of the speech quality.

  • PDF

Technical Trend of the Lower Limb Exoskeleton System for the Performance Enhancement (인체 능력 향상을 위한 하지 외골격 시스템의 기술 동향)

  • Lee, Hee-Don;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.364-371
    • /
    • 2014
  • The purpose of this paper is to review recent developments in lower limb exoskeletons. The exoskeleton system is a human-robot cooperation system that enhances the performance of the wearer in various environments while the human operator is in charge of the position control, contextual perception, and motion signal generation through the robot's artificial intelligence. This system is in the form of a mechanical structure that is combined to the exterior of a human body to improve the muscular power of the wearer. This paper is followed by an overview of the development history of exoskeleton systems and their three main applications in military/industrial field, medical/rehabilitation field and social welfare field. Besides the key technologies in exoskeleton systems, the research is presented from several viewpoints of the exoskeleton mechanism, human-robot interface and human-robot cooperation control.