• Title/Summary/Keyword: Human vibration characteristics

Search Result 148, Processing Time 0.033 seconds

A Study on Valuation of Acoustic Performance about Dome-typed Gymnastics Training Floor utilizing Auralization (가청화를 이용한 돔형 체조연습장의 음향 성능평가에 관한 연구)

  • Yun, Jae-Hyun;Ju, Duck-Hoon;Jung, Eun-Jung;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.132-136
    • /
    • 2007
  • In case of indoor gymnastics training floor, in view of its characteristics, since it is simultaneously required the related smooth communication between the coach and the player, also the acoustic performance regarding to the Clearness of Music, besides the sport activity, the consideration about the acoustic character has entered the stage as an indispensable element. On such viewpoint, on the object of the recently built dome-typed gymnastics training floor, after making the optimized acoustic design with the remodeling through acoustic simulation, by means of measurement and valuation on human's psychological(sensual) degree utilizing Auralization that enables to experience the virtual sound field at the stage of design, this thesis has attempted to survey of the acoustic satisfaction degree and its reaction about the gymnastics training floor. As the result of investigation about the research on the space of object, it could be known that the valuation regarding to the acoustic performance of 'After-Improvement' was distinctly more refined than that of 'Before-Improvement'. It is now considering that such result of the study can be utilized as the useful data which enables to improve the retrenchment effect of the construction cost as well as the acoustic capability, by means of the prediction control on the acoustic problem from the stage of design, for the occasion when the similar indoor sport gymnasium is planning to build for the near future.

  • PDF

Perceptual Evaluation of Noise Sources in a Chamber for Residential and Working Environment (주거 및 사무환경 챔버에서의 생활소음에 대한 감성적 평가)

  • Jeon, Jin-Yong;Kim, Kyong-Ho;Jung, Jeong-Ho;Ryu, Jong-Kwan;Cho, Moon-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.437-444
    • /
    • 2002
  • This paper is to provide the basic way of a acoustical evaluation and efficient control noise by investigating the limits of perceptual loudness of living environment and by finding out any correlation between Physical characteristics of noise and psychoacoustic parameters. The limits of perceptual loudness were selected by the subjects in a chamber for residential and working environment. And the noise sources were analyzed to find out whether there is any correlation with Zwicker parameters and ACF factors. In this study especially, to set up the domestic evaluation grade about floor impact noise. we'd like to suggest the loudness Perception research result as fundamental resource for setting up the evaluation grade through the result that is based on annoyance. In the result of this research, upper limit of heavy-weight impact noise was L-60, and lower limit of it was L-50. On the other hand, upper limit of light-weight impact noise was L-70, and lower limit of it was L-55. It seemed that the loudness of noise from vacuum cleaner noise does not affect its perceived noisiness. Noises implicated In human such as floor walking noise and talking sound, are the most irritating noise in office environment.

A Study on Auditory Perception Characteristics of Directional Tonal Noise (방향성을 가진 회전체 소음의 청각계 인지 특성에 관한 연구)

  • Seo, Kang-Won;Kim, Eui-Youl;Kim, Sung-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.348-353
    • /
    • 2012
  • This paper presents the HRTF based experimental approach to figure out why the human auditory perception on the interior noise source including the directional tonal components does not well match with the dominant features extracted from recorded acoustic signals in terms of psycho-acoustics. Since the general objective evaluation models for tonalness among various sound attributes are a function of width, frequency, excessive level of tonal components respectively, the directional tonal components cannot be properly evaluated without considering the effects of head-related transfer function on the binaural auditory perception. Thus, the directivity of source is additionally considered to prevent the erroneous conclusions from the same sound source in the process of source identification. The signal synthesis technique is used to solve a little difficulty in measuring all of desired acoustic signals for jury evaluation. The sound attributes of synthetic acoustics signals are analyzed to roughly predict the results of jury evaluation in advance by using sound quality factors such as loudness, sharpness, roughness, fluctuation strength and tonality. The jury evaluation is carefully conducted based on the recommended guideline suggested by N. Ottoet al. Each sound is respectively evaluated by selecting a value between -2 and 2 in intervals of 0.2 point. Through above procedure, based on the results of jury evaluation, it is confirmed that serious problems can be caused in the process of analyzing the dominant sound attributes in terms of psycho-acoustics according to the type of a microphone and a playback system.

  • PDF

Structural evaluation of all-GFRP cable-stayed footbridge after 20 years of service life

  • Gorski, Piotr;Stankiewicz, Beata;Tatara, Marcin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.527-544
    • /
    • 2018
  • The paper presents the study on a change in modal parameters and structural stiffness of cable-stayed Fiberline Bridge made entirely of Glass Fiber Reinforced Polymer (GFRP) composite used for 20 years in the fjord area of Kolding, Denmark. Due to this specific location the bridge structure was subjected to natural aging in harsh environmental conditions. The flexural properties of the pultruded GFRP profiles acquired from the analyzed footbridge in 1997 and 2012 were determined through three-point bending tests. It was found that the Young's modulus increased by approximately 9%. Moreover, the influence of the temperature on the storage and loss modulus of GFRP material acquired from the Fiberline Bridge was studied by the dynamic mechanical analysis. The good thermal stability in potential real temperatures was found. The natural vibration frequencies and mode shapes of the bridge for its original state were evaluated through the application of the Finite Element (FE) method. The initial FE model was created using the real geometrical and material data obtained from both the design data and flexural test results performed in 1997 for the intact composite GFRP material. Full scale experimental investigations of the free-decay response under human jumping for the experimental state were carried out applying accelerometers. Seven natural frequencies, corresponding mode shapes and damping ratios were identified. The numerical and experimental results were compared. Based on the difference in the fundamental natural frequency it was again confirmed that the structural stiffness of the bridge increased by about 9% after 20 years of service life. Data collected from this study were used to validate the assumed FE model. It can be concluded that the updated FE model accurately reproduces the dynamic behavior of the bridge and can be used as a proper baseline model for the long-term monitoring to evaluate the overall structural response under service loads. The obtained results provided a relevant data for the structural health monitoring of all-GFRP bridge.

Structural Optimization of the Lower Parts in a Humanoid Considering Dynamic Characteristics (동적 특성을 고려한 휴머노이드 하체 부품의 구조최적설계)

  • Hong, Eul-Pyo;Lee, Il-Kwon;You, Bum-Jae;Kim, Chang-Hwan;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.882-889
    • /
    • 2008
  • A humanoid is a robot with its overall appearance based on that of the human body. When the humanoid moves or walks, dynamic forces act on the body structure. Although the humanoid keeps the balance by using a precise control, the dynamic forces generate unexpected deformation or vibration and cause difficulties on the control. Generally, the structure of the humanoid is designed by the designer's experience and intuition. Then the structure can be excessively heavy or fragile. A humanoid design scenario for a systematic design is proposed to reduce the weight of the structure while sufficient strength is kept. Lower parts of the humanoid are selected to apply the proposed design scenario. Multi-body dynamics is employed to calculate the external dynamic forces on the parts and structural optimization is carried out to design the lower parts. Because structural optimization using dynamic forces directly is fairly difficult, linear dynamic response structural optimization using equivalent static loads is utilized. Topology and shape optimizations are adopted for two steps of initial and detailed designs, respectively. Various commercial software systems are used for analysis and optimization. Improved designs are obtained and the design results are discussed.

A Study on the Nature of Sound and the Hearing Mechanism (소리의 특성 및 청지각기능에 대한 고찰)

  • Lee, Jung-Hak;Kim, Jin-Sook
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.167-179
    • /
    • 1999
  • The hearing mechanism is a complicated system. Sound is generated by a source that sends out air pressure or power. The pressure or power makes the sound waves. These waves reach the eardrum, or tympanic membrane, which vibrates at a rate and magnitude proportional to the nature of the sound waves. The tympanic membrane transforms this vibration into the mechanical energy in the middle ear, which in turn converts it to the hydraulic energy in the fluid of the inner ear. The hydraulic energy stimulates the sensory cells of the inner ear which send neuroelectrical impulses to the central auditory nervous system. The passive perception of auditory information starts just here. The listener gives attention to the speech sound, differentiates the sound from background noise, and integrates his experience with similar sounds. The listener then puts all of these aspects of audition into the context of the moment to identify the nature of sound. This has a major role in human communication. This paper provides an overview of the nature and characteristics of sound, the structure and function of the auditory system, and the way in which sound is processed by the auditory system.

  • PDF

Structural behavior of arch dams considering experimentally validated prototype model using similitude and scaling laws

  • Altunisik, Ahmet Can;Kalkan, Ebru;Basaga, Hasan B.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.101-116
    • /
    • 2018
  • As one of the most important engineering structures, arch dams are huge constructions built with human hands and have strategical importance. Because of the fact that long construction duration, water supply, financial reasons, major loss of life and material since failure etc., the design of arch dams is very important problem and should be done by expert engineers to determine the structural behavior more accurately. Finite element analyses and non-destructive experimental measurements can be used to investigate the structural response, but there are some difficulties such as spending a long time while modelling, analysis and in-situ testing. Therefore, it is more useful to conduct the research on the laboratory conditions and to transform the obtained results into real constructions. Within the scope of this study, it is aimed to determine the structural behavior of arch dams considering experimentally validated prototype laboratory model using similitude and scaling laws. Type-1 arch dam, which is one of five arch dam types suggested at the "Arch Dams" Symposium in England in 1968 is selected as reference prototype model. The dam is built considering dam-reservoir-foundation interaction and ambient vibration tests are performed to validate the finite element results such as dynamic characteristics, displacements, principal stresses and strains. These results are considered as reference parameters and used to determine the real arch dam response with different scales factors such as 335, 400, 416.67 and 450. These values are selected by considering previously examined dam projects. Arch heights are calculated as 201 m, 240 m, 250 m and 270 m, respectively. The structural response is investigated between the model and prototype by using similarity requirements, field equations, scaling laws etc. To validate these results, finite element models are enlarged in the same scales and analyses are repeated to obtain the dynamic characteristics, displacements, principal stresses and strains. At the end of the study, it is seen that there is a good agreement between all results obtained by similarity requirements with scaling laws and enlarged finite element models.

Development of New Stacked Element Piezoelectric Polyvinylidene Fluoride Pressure Sensor for Simultaneous Heartbeat and Respiration Measurements (PVDF 압전소자를 이용한 심장박동 및 호흡수 동시측정센서개발)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Lee, So-Jin;Manh, Long-Nguyen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.100-108
    • /
    • 2019
  • In this paper, a new stacked element pressure sensor has proposed for heartbeat and respiration measurement. This device can be directly attached to an individual's chest; heartbeat and respiration are detected by the pulsatile vibration and deformation of the chest. A key feature of the device is the simultaneous measurement of heart rate and respiration. The structure of the sensor consists of two stacked elements, in which one element includes one polyvinylidene fluoride (PVDF) thin film bonded on polydimethylsiloxane (PDMS) substrate. In addition, for the measurement and signal processing, the electric circuit and the filter are simply constructed with an OP-amp, resistance, and a capacitor. One element (element1, PDMS) maximizes the respiration signal; the other (element2, PVDF) is used to measure heartbeat. Element1 and element2 had sensitivity of 0.163V/N and 0.209V/N, respectively, and element2 showed improved characteristics compared with element1 in response to force. Thus, element1 and element2 were optimized for measuring respiration heart rate, respectively. Through mechanical and vivo human tests, this sensor shows the great potential to optimize the signals of heartbeat and respiration compared with commercial devices. Moreover, the proposed sensor is flexible, light weight, and low cost. All of these characteristics illustrate an effective piezoelectric pressure sensor for heartbeat and respiration measurements.

Low Frequency Characteristic of Seoul Subway Noise (서울지하철의 저주파소음 특성)

  • Jung, Sung-Soo;Shin, Su-Hyun;Kim, Ho-Chul;Lee, Woo-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1193-1197
    • /
    • 2005
  • The low frequency noise below 200 Hz, including inaudible infra-sound, is known to affect human physiology ; circulation, respiration, nerve, endocrine, etc. Legislation has been introduced in several countries regarding evaluation guideline and measurement method of low frequency noise. In this work, low frequency characteristics of the Seoul subway transportation system was investigated in terms of the noise level and spectrum in the interior of running passenger car and the subway station. The interior sound pressure level of the passenger car was between 60 and 105 dB in the frequency range of $1{\sim}200\;Hz$ and varied with car speed. The marked sound pressure level peak at 8 Hz, infra-sound, observed for the most of Lines is shown to correspond to the resonance frequency of passenger car. The level of station platform noise was lower than the interior noise of running car because of the lower speed at arriving/departure. The results indicated that the interior noise level of running passenger car was inside the oppressive feeling region, proposed by Ochiai, in the frequency range of $20{\sim}80\;Hz$ which makes a little concern.

Implementation of Fitting Software for Fully Implantable Middle Ear Hearing Device (완전 이식형 인공중이용 적합 소프트웨어의 구현)

  • Lee, J.W.;Jung, E.S.;Lim, H.K.;Lee, J.H.;Seong, K.W.;Kim, M.N.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.3 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • Generally, fully implantable middle ear hearing device (F-IMEHD) is implanted under the skin nearby human temporal bone with all components including implantable microphone and vibration transducer. The microphone and transducer have different characteristic before and after implant. Fitting process is performed for this characteristic change of them and proper performance of hearing aids for each patient. Conventional hearing aids and partially implantable hearing aids, they have wired connector for fitting process. However in case of F-IMEHD, it is difficult this wired connection, because all components of F-IMEHD is implanted. In this paper, fitting software that can be apply wireless fitting hardware for F-IMEHD has been designed and implemented. It can find out proper fitting parameter reflecting characteristics of the microphone and transducer for patients who has difficulty in hearing.

  • PDF