• 제목/요약/키워드: Human testis

검색결과 122건 처리시간 0.031초

CAGE, a Novel Cancer/Testis Antigen Gene, Promotes Cell Motility by Activating ERK and p38 MAPK and Downregulating ROS

  • Shim, Hyeeun;Shim, Eunsook;Lee, Hansoo;Hahn, Janghee;Kang, Dongmin;Lee, Yun-Sil;Jeoung, Dooil
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.367-375
    • /
    • 2006
  • We previously identified a novel cancer/testis antigen gene CAGE by screening cDNA expression libraries of human testis and gastric cancer cell lines with sera of gastric cancer patients. CAGE is expressed in many cancers and cancer cell lines, but not in normal tissues apart from the testis. In the present study, we investigated its role in the motility of cells of two human cancer cell lines: HeLa and the human hepatic cancer cell line, SNU387. Induction of CAGE by tetracycline or transient transfection enhanced the migration and invasiveness of HeLa cells, but not the adhesiveness of either cell line. Overexpression of CAGE led to activation of ERK and p38 MAPK but not Akt, and inhibition of ERK by PD98059 or p38 MAPK by SB203580 counteracted the CAGE-promoted increase in motility in both cell lines. Overexpression of CAGE also resulted in a reduction of ROS and an increase of ROS scavenging, associated with induction of catalase activity. Inhibition of ERK and p38 MAPK increased ROS levels in cells transfected with CAGE, suggesting that ROS reduce the motility of both cell lines. Inhibition of ERK and p38 MAPK reduced the induction of catalase activity resulting from overexpression of CAGE, and inhibition of catalase reduced CAGE-promoted motility. We conclude that CAGE enhances the motility of cancer cells by activating ERK and p38 MAPK, inducing catalase activity, and reducing ROS levels.

Ectopic Overexpression of Coiled-Coil Domain Containing 110 Delays G2/M Entry in U2-OS Cells

  • Lee, Sue Nyoung;Hong, Kyeong-Man;Seong, Yeon Sun;Kwak, Sahng-June
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권2호
    • /
    • pp.101-111
    • /
    • 2020
  • Coiled-coil domain containing 110 (CCDC110, KM-HN-1) is a protein containing C-terminal coiled-coil domain (CCD) which was previously discovered as a member of the human cancer/testis antigen (CTA). In addition, CCDC110 has both nuclear localization signal sequence and the leucine zipper motif. Although the functional role of CCDC110 has yet to be fully identified, the mRNA expression levels of CCDC110 are known to be highly elevated in various cancer types including testis, implying its relevance to cancer pathogenesis. In this study, we first developed several monoclonal antibody (mAb) hybridoma clones targeting CCDC110 and further isolated clone by characterizing for its specificity using immunoblotting and immunoprecipitation approaches with basal parenchymal sperm cells in testis tissue. Next, using these mAbs, we showed that the Tet-inducible overexpression of CCDC110 protein delayed the entry of G2/M phase in U2-OS osteosarcoma cells. Based on these results, we propose that CCDC110 plays a crucial role in cell cycle progression.

Molecular Cloning, Identification and Characteristics of a Novel Isoform of Carbamyl Phosphate Synthetase I in Human Testis

  • Huo, Ran;Zhu, Hui;Lu, Li;Ying, Lanlan;Xu, Min;Xu, Zhiyang;Li, Jianmin;Zhou, Zuomin;Sha, Jiahao
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.28-33
    • /
    • 2005
  • A gene coding a novel isoform of carbamyl phosphate synthetase I (CPS1) was cloned from a human testicular library. As shown by cDNA microarray hybridization, this gene was expressed at a higher level in human adult testes than in fetal testes. The full length of its cDNA was 3831 bp, with a 3149 bp open reading frame, encoding a 1050-amino-acid protein. The cDNA sequence was deposited in the GenBank (AY317138). Sequence analysis showed that it was homologous to the human CPS1 gene. The putative protein contained functional domains composing the intact large subunit of carbamoyl phosphate synthetase, thus indicated it has the capability of arginine biosynthesis. A multiple tissue expression profile showed high expression of this gene in human testis, suggesting the novel alternative splicing form of CPS1 may be correlated with human spermatogenesis.

Carnitine and Calmodulin N-Methylation in Rat Testis; Calmodulin May beInvolved in Carnitine Biosynthesis

  • Oh, Suk-Heung;Cha, Youn-Soo;Sohn, Hee-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제3권3호
    • /
    • pp.251-255
    • /
    • 1998
  • Rat testis known to contain all of the enzymes required for carnitine biosynthesis also contains high concentration of calmodulin, a protein which may or may not contain trimethyllysine, the major substrate in carnitine biosynthesis. The purpose of this study was to investigate the levels of carnitine and the state of calmodulin N-methylation in rat testes, and to discuss the possibility of the involvement of calmodulin incarnitine biosynthesis. Nonesterified carnitine , acid soluble acyl carnitine, and acid insoluble acyl carnitine of ra tests were 273 nmole, 62nmole, and 4 nmole/g tissue, respectively. Total carnitine level was 339 nmole/g testes tissue. Calmodulin purified from rat tests was assayed for methylation potential using N-methyltransferase from the rat testes. Rat testes calmodulin showed no 3H-methyl incorporation indicating that the calmodulin was trimethylated already by endogenous calmodulin N-methyltransferase. Amino acid composition analysis revealed that the rat testes calmodulin containd one mole of trimethyllysine per mole of calmodulin. These data suggest that testes calmodulin could provide the trimethyllysine needed for the synthesis of carnitine in the rat tests.

  • PDF

Stage-specific Expression of Ankyrin and SOCS Box Protein-4 (Asb-4) during Spermatogenesis

  • Kim, Soo-Kyoung;Rhim, Si Youn;Lee, Man Ryul;Kim, Jong Soo;Kim, Hyung Jun;Lee, Dong Ryul;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.317-321
    • /
    • 2008
  • Members of the large family of Asb proteins are ubiquitously expressed in mammalian tissues; however, the roles of individual Asb and their function in the developmental testes have not been reported. In this report, we isolated a murine Asb4 from mouse testis. Northern blot analysis revealed that mAsb-4 was expressed only in testes and produced in a stage-specific manner during spermatogenesis. It was expressed in murine testes beginning in the fourth week after birth and extending into adulthood. Pachytene spermatocytes had the highest level of expression. Interestingly, the human homologue of mAsb-4, ASB-4 (hASB-4) was also expressed in human testis. These results suggest that ASB-4 plays pivotal roles in mammalian testis development and spermatogenesis.

Identification and characterization of a novel cancer/testis antigen gene

  • Cho , Bom-Soo;Lee, Dae-Yeon;Lim , Yoon;Park, Sae-Young;Lee, Ho-Soon;Kim, Woo-Ho;Yang, Han-Kwang;Bang, Yung-Jue;Jeoung , Doo-Il
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.326.1-326.1
    • /
    • 2002
  • We applied serological analysis of cDNA expression library technique to identify cancer-associated genes. We screened cDNA expression libraries of human testis and gastric cancer cell lines with sera of patients with gastric cancers. We identified a gene whose expression is testis-specific among normal tissues. We cloned and characterized this novel gene. It contains D-E-A-D box domain and encodes a putative protein of 630 amino acids with possible helicase activity. It showed wide expression in various cancer tissues and cancer cell lines. (omitted)

  • PDF

DAZL binds to the transcripts of several Tssk genes in germ cells

  • Zeng, Mei;Deng, Wenqian;Wang, Xinying;Qiu, Weimin;Liu, Yanyan;Sun, Huaqin;Tao, Dachang;Zhang, Sizhong;Ma, Yongxin
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.300-304
    • /
    • 2008
  • The Dazl gene encodes a germ-cell-specific RNA-binding protein which is essential for spermatogenesis. It has been proposed that this protein (DAZL) binds to RNA in the cytoplasm of germ cells and controls spermatogenesis. Using the specific nucleic acids associated with proteins (SNAAP) technique, we identified 17 target mRNAs bound by mDAZL. Among these transcripts, we focused on TSSK2, which encodes a testis-specific serine/threonine kinase. To date, five TSSK family members have been cloned, and all are exclusively expressed in the testis. We demonstrated that in addition to the TSSK1 3'UTR, the 3'UTRs of TSSKs 2 and 4 were bound by human and mouse DAZL, and that human DAZL (hDAZL) bound to the 3'UTR of human TSSK5 (hTSSK5). Our results suggest that the Dazl gene may play different roles in human and mouse spermatogenesis by regulating different members of the downstream gene family.

A study on the patterns of expression of the DAZ and HSP genes in the testicular tissue of men with azoospermia

  • Lee, Ho-Joon;Lee, Hyoung-Song;Song, Gyun-Jee;Byun, Hye-Kyung;Cho, Youl-Hee;Kim, Jong-Hyun;Seo, Ju-Tae;Lee, Yoo-Sik
    • Journal of Genetic Medicine
    • /
    • 제1권1호
    • /
    • pp.51-56
    • /
    • 1997
  • Spermatogenesis is known to be regulated by a number of genes and several factors such as hormones, growth factors, cytokines and others. This study was done to evaluate the relationship between HSPs and DAZ genes in human spermatogenesis; we observed the expression pattern of HSP gene in azoospermia men with DAZ gene that regulated the gene expression related with human spermatogenesis. RT-PCR method was used to detect DAZ, HSP70A, and HSP70B transcripts in all RNA samples. Total RNA was extracted from 21 testis tissues using TRIZOL reagent. cDNAs were synthesized with reverse transcriptase, AMV. All PCR reaction were performed on a PCR themocycler with DAZ, HSP70A, and HSP70B-specific primers. Semen analysis, karyotyping and testis histology were performed. DAZ gene, known as a candidate gene of azoospermia factor(AZF), was deleted in 2 of 21 patients. To evaluate the only effects of HSPs in this patients, 2 DAZ deleted cases were removed. We observed the mRNA of HSP70B in 5 whereas none could be seen with regard to HSP70A. Furthermore, the sperm of these 5 men were discovered to be immature. In conclusion, HSP70B as well ad DAZ gene seem to be involved causing spermatogenic failure. We suggest that HSP70B plays an important role in spermatogenesis and it is one of factors induced sperm maturation in human.

  • PDF

Molecular Cloning and Bioinformatic Analysis of SPATA4 Gene

  • Liu, Shang-Feng;Ai, Chao;Ge, Zhong-Qi;Liu, Hai-Luo;Liu, Bo-Wen;He, Shan;Wang, Zhao
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.739-747
    • /
    • 2005
  • Full-length cDNA sequences of four novel SPATA4 genes in chimpanzee, cow, chicken and ascidian were identified by bioinformatic analysis using mouse or human SPATA4 cDNA fragment as electronic probe. All these genes have 6 exons and have similar protein molecular weight and do not localize in sex chromosome. The mouse SPATA4 sequence is identified as significantly changed in cryptorchidism, which shares no significant homology with any known protein in swissprot databases except for the homologous genes in various vertebrates. Our searching results showed that all SPATA4 proteins have a putative conserved domain DUF1042. The percentages of putative SPATA4 protein sequence identity ranging from 30% to 99%. The high similarity was also found in 1 kb promoter regions of human, mouse and rat SPATA4 gene. The similarities of the sequences upstream of SPATA4 promoter also have a high proportion. The results of searching SymAtlas (http://symatlas.gnf.org/SymAtlas/) showed that human SPATA4 has a high expression in testis, especially in testis interstitial, leydig cell, seminiferous tubule and germ cell. Mouse SPATA4 was observed exclusively in adult mouse testis and almost no signal was detected in other tissues. The pI values of the protein are negative, ranging from 9.44 to 10.15. The subcellular location of the protein is usually in the nucleus. And the signal peptide possibilities for SPATA4 are always zero. Using the SNPs data in NCBI, we found 33 SNPs in human SPATA4 gene genomic DNA region, with the distribution of 29 SNPs in the introns. CpG island searching gives the data about CpG island, which shows that the regions of the CpG island have a high similarity with each other, though the length of the CpG island is different from each other.This research is a fundamental work in the fields of the bioinformational analysis, and also put forward a new way for the bioinformatic analysis of other genes.