• Title/Summary/Keyword: Human robot interaction

Search Result 342, Processing Time 0.031 seconds

Network human-robot interface at service level

  • Nguyen, To Dong;Oh, Sang-Rok;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1938-1943
    • /
    • 2005
  • Network human-robot interface is an important research topic. In home application, users access the robotic system directly via voice, gestures or through the network. Users explore a system by using the services provided by this system and to some extend users are enable to participate in a service as partners. A service may be provided by a robot, a group of robots or robots and other network connected systems (distributed sensors, information systems, etc). All these services are done in the network environment, where uncertainty such as the unstable network connection, the availability of the partners in a service, exists. Moreover, these services are controlled by several users, accessing at different time by different methods. Our research aimed at solving this problem to provide a high available level, flexible coordination system. In this paper, a multi-agent framework is proposed. This framework is validated by using our new concept of slave agents, a responsive multi-agent environment, a virtual directory facilitator (VDF), and a task allocation system using contract net protocol. Our system uses a mixed model between distributed and centralized model. It uses a centralized agent management system (AMS) to control the overall system. However, the partners and users may be distributed agents connected to the center through agent communication or centralized at the AMS container using the slave agents to represent the physical agents. The system is able to determine the task allocation for a group of robot working as a team to provide a service. A number of experiments have been conducted successfully in our lab environment using Issac robot, a PDA for user agent and a wireless network system, operated under our multi agent framework control. The experiments show that this framework works well and provides some advantages to existing systems.

  • PDF

Generation of Robot Facial Gestures based on Facial Actions and Animation Principles (Facial Actions 과 애니메이션 원리에 기반한 로봇의 얼굴 제스처 생성)

  • Park, Jeong Woo;Kim, Woo Hyun;Lee, Won Hyong;Lee, Hui Sung;Chung, Myung Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.495-502
    • /
    • 2014
  • This paper proposes a method to generate diverse robot facial expressions and facial gestures in order to help long-term HRI. First, nine basic dynamics for diverse robot facial expressions are determined based on the dynamics of human facial expressions and principles of animation for even identical emotions. In the second stage, facial actions are added to express facial gestures such as sniffling or wailing loudly corresponding to sadness, laughing aloud or smiling corresponding to happiness, etc. To evaluate the effectiveness of our approach, we compared the facial expressions of the developed robot when the proposed method is used or not. The results of the survey showed that the proposed method can help robots generate more realistic facial expressions.

Behavior-based Control Considering the Interaction Between a Human Operator and an Autonomous Surface Vehicle (운용자와 자율 무인선 상호 작용을 고려한 행위 기반의 제어 알고리즘)

  • Cho, Yonghoon;Kim, Jonghwi;Kim, Jinwhan;Jo, Yongjin;Ryu, Jaekwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.620-626
    • /
    • 2019
  • With the development of robot technology, the expectation of autonomous mission operations has increased, and the research on robot control architectures and mission planners has continued. A scalable and robust control architecture is required for unmanned surface vehicles (USVs) to perform a variety of tasks, such as surveillance, reconnaissance, and search and rescue operations, in unstructured and time-varying maritime environments. In this paper, we propose a robot control architecture along with a new utility function that can be extended to various applications for USVs. Also, an additional structure is proposed to reflect the operator's command and improve the performance of the autonomous mission. The proposed architecture was developed using a robot operating system (ROS), and the performance and feasibility of the architecture were verified through simulations.

Development of An Interactive Tour-Guide Robot in Dynamic Environments

  • 김건희;정우진;김경록;김문상;한상목;신홍식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.20-20
    • /
    • 2004
  • 최근 들어서 로봇 기술이 공공장소에서 서비스 제공을 위한 목적으로 이용되기 위하여 다양한 시도들이 이루어지고 있다. 현재 로봇 기술 연구에 있어서 큰 두 가지 이슈엔 로봇과 사람 사이의 인터렉션과 동적 환경에서의 네비게이션 문제가 있고, 이에 밀접하게 연관된 안내 로봇 시스템 연구에 많은 연구자들이 관심을 가지고 연구를 수행하고 있다 KIST(Korea Institute of Science and Technology)의 지능로봇연구센터에서도 이러한 맥락에서 2004년 8월에 대전 국립중앙박물관에 상시 운영을 목표로 하는 안내 로봇 "지니"를 개발 하고 있다.(중략)

  • PDF

Intelligent Space and Ontological Network System

  • Yamaguchi, Toru;Sato, Eri;Murakami, Hiroki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.126-129
    • /
    • 2003
  • The robot has recently emerged as a factor in the daily lives of humans, taking the form of a mechanical pet or similar source of entertainment. A robot system that is designed to co-exist with humans, i.e., a coexistence-type robot system, is important to be "it exists in various environments with the person, and robot system by which the interaction of n physical, informational emotion with the person etc. was valued". When studying the impact of intimacy in the human/robot relationship, we have to examine the problems that can arise as a result of physical intimacy(coordination on safety in the hardware side and a soft side). Furthermore, We should also consider the informational aspects of intimacy (recognition technology, and information transport and sharing).

  • PDF

Design and Graphic Simulation of a Cleaning Robot for a Radioactive Environment Application

  • Kim, K.;Park, J.;M. Yang;C. Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.3-161
    • /
    • 2001
  • This paper describes design features of a cleaning robot for use in a radioactive zone of the Isolation room of the Irradiated Material Examination Facility (IMEF) at Korea Atomic Energy Research Institute (KAERI). This cleaning robot is intended to completely eliminate human interaction with hazardous radioactive contaminants. The clean ing robot that is operated either by manual mode or by autonomous mode is designed to be capable of cleaning the isolation room´s floor surface and collecting dry nuclear fuel debris and other radioactive waste placed on the floor. The functional, mechanical and electrical design considerations of the cleaning robot in terms of remote cleanup operation and remote maintenance at a radioactive environment are presented. A graphical representation of the cleaning ...

  • PDF

Vision Based Sensor Fusion System of Biped Walking Robot for Environment Recognition (영상 기반 센서 융합을 이용한 이쪽로봇에서의 환경 인식 시스템의 개발)

  • Song, Hee-Jun;Lee, Seon-Gu;Kang, Tae-Gu;Kim, Dong-Won;Seo, Sam-Jun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.123-125
    • /
    • 2006
  • This paper discusses the method of vision based sensor fusion system for biped robot walking. Most researches on biped walking robot have mostly focused on walking algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since biped walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, systems for environment recognition and tole-operation have been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. For carrying out certain tasks, an object tracking system using modified optical flow algorithm and obstacle recognition system using enhanced template matching and hierarchical support vector machine algorithm by wireless vision camera are implemented with sensor fusion system using other sensors installed in a biped walking robot. Also systems for robot manipulating and communication with user have been developed for robot.

  • PDF

Development of Humanoid Robot HUMIC and Reinforcement Learning-based Robot Behavior Intelligence using Gazebo Simulator (휴머노이드 로봇 HUMIC 개발 및 Gazebo 시뮬레이터를 이용한 강화학습 기반 로봇 행동 지능 연구)

  • Kim, Young-Gi;Han, Ji-Hyeong
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.260-269
    • /
    • 2021
  • To verify performance or conduct experiments using actual robots, a lot of costs are needed such as robot hardware, experimental space, and time. Therefore, a simulation environment is an essential tool in robotics research. In this paper, we develop the HUMIC simulator using ROS and Gazebo. HUMIC is a humanoid robot, which is developed by HCIR Lab., for human-robot interaction and an upper body of HUMIC is similar to humans with a head, body, waist, arms, and hands. The Gazebo is an open-source three-dimensional robot simulator that provides the ability to simulate robots accurately and efficiently along with simulated indoor and outdoor environments. We develop a GUI for users to easily simulate and manipulate the HUMIC simulator. Moreover, we open the developed HUMIC simulator and GUI for other robotics researchers to use. We test the developed HUMIC simulator for object detection and reinforcement learning-based navigation tasks successfully. As a further study, we plan to develop robot behavior intelligence based on reinforcement learning algorithms using the developed simulator, and then apply it to the real robot.

An Art-Robot Expressing Emotion with Color Light and Behavior by Human-Object Interaction

  • Kwon, Yanghee;Kim, Sangwook
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • The era of the fourth industrial revolution, which will bring about a great wave of change in the 21st century, is the age of super-connection that links humans to humans, objects to objects, and humans to objects. In the smart city and the smart space which are evolving further, emotional engineering is a field of interdisciplinary researches that still attract attention with the development of technology. This paper proposes an emotional object prototype as a possibility of emotional interaction in the relation between human and object. By suggesting emotional objects that produce color changes and movements through the emotional interactions between humans and objects against the current social issue-loneliness of modern people, we have approached the influence of our lives in the relation with objects. It is expected that emotional objects that are approached from the fundamental view will be able to be in our lives as a viable cultural intermediary in our future living space.

Sound Improvement of Violin Playing Robot Applying Auditory Feedback

  • Jo, Wonse;Yura, Jargalbaatar;Kim, Donghan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2378-2387
    • /
    • 2017
  • Violinists learn to make better sounds by hearing and evaluating their own playing though numerous practice. This study proposes a new method of auditory feedback, which mimics this violinists' step and verifies its efficiency using experiments. Making the desired sound quality of a violin is difficult without auditory feedback even though an expert violinist plays. An algorithm for controlling a robot arm of violin playing robot is determined based on correlations with bowing speed, bowing force, and sound point that determine the sound quality of a violin. The bowing speed is estimated by the control command of the robot arm, where the bowing force and the sound point are recognized by using a two-axis load cell and a photo interrupter, respectively. To improve the sound quality of a violin playing robot, the sounds information is obtained by auditory feedback system applied Short Time Fourier Transform (STFT) to the sounds from a violin. This study suggests Gaussian-Harmonic-Quality (GHQ) uses sounds' clarity, accuracy, and harmonic structure in order to decide sound quality, objectively. Through the experiments, the auditory feedback system improved the performance quality by the robot accordingly, changing the bowing speed, bowing force, and sound point and determining the quality of robot sounds by GHQ sound quality evaluation system.