DOI QR코드

DOI QR Code

Development of Humanoid Robot HUMIC and Reinforcement Learning-based Robot Behavior Intelligence using Gazebo Simulator

휴머노이드 로봇 HUMIC 개발 및 Gazebo 시뮬레이터를 이용한 강화학습 기반 로봇 행동 지능 연구

  • Kim, Young-Gi (Dept. of Computer Science and Engineering, Seoul National University of Science and Technology) ;
  • Han, Ji-Hyeong (Dept. of Computer Science and Engineering, Seoul National University of Science and Technology)
  • Received : 2021.03.23
  • Accepted : 2021.05.19
  • Published : 2021.08.31

Abstract

To verify performance or conduct experiments using actual robots, a lot of costs are needed such as robot hardware, experimental space, and time. Therefore, a simulation environment is an essential tool in robotics research. In this paper, we develop the HUMIC simulator using ROS and Gazebo. HUMIC is a humanoid robot, which is developed by HCIR Lab., for human-robot interaction and an upper body of HUMIC is similar to humans with a head, body, waist, arms, and hands. The Gazebo is an open-source three-dimensional robot simulator that provides the ability to simulate robots accurately and efficiently along with simulated indoor and outdoor environments. We develop a GUI for users to easily simulate and manipulate the HUMIC simulator. Moreover, we open the developed HUMIC simulator and GUI for other robotics researchers to use. We test the developed HUMIC simulator for object detection and reinforcement learning-based navigation tasks successfully. As a further study, we plan to develop robot behavior intelligence based on reinforcement learning algorithms using the developed simulator, and then apply it to the real robot.

Keywords

Acknowledgement

This work was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2018R1C1B6007230)

References

  1. S. Woo, "Research trends in how to transfer trained autonomous intelligence from virtual environments to real world robots," Communications of the Korean Institute of Information Scientists and Engineers, vol. 37, no. 11, pp. 41-47, 2019, [Online], https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE
  2. Y. Kim and B.-Y. Kang, "Cooperative Robot for Table Balancing Using Q-learning," Journal of Korea Robotics Society, vol. 15, no. 4, pp. 404-412, Dec., 2020, DOI: 10.7746/jkros.2020.15.4.404.
  3. C. Wang, Q. Zhang, Q. Tian, S. Li, X. Wang, D. Lane, Y. Petillot, and S. Wang, "Learning Mobile Manipulation Through Deep Reinforcement Learning," Sensors, vol. 20, no. 3, 2020, DOI: 10.3390/s20030939.
  4. OpenAI, "Learning dexterous in-hand manipulation," The International Journal of Robotics Research, vol. 39, no. 1, pp. 3-20, 2020, DOI: 10.1177/0278364919887447.
  5. I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, "Extending the OpenAI Gym for robotics: a toolkit for reinforcement learning using ROS and Gazebo," arXiv:1608.05742, pp. 1-6, 2016, [Online], https://arxiv.org/abs/1608.05742.
  6. N. Koening and A. Howard, "Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator," 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)(IEEE Cat. No.04CH37566), Sendai, Japan, 2004, DOI: 10.1109/IROS.2004.1389727.
  7. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, "ROS: an open-source Robot Operating System," ICRA workshop on open source software, 2009, [Online], http://robotics.stanford.edu/~ang/papers/icraoss09-ROS.pdf.
  8. Open Source Robotics Foundation, [Online], http://wiki.ros.org/, Accessed: 0217, 2021.
  9. S. Saeedvand, M. Jafari, H. S. Aghdasi, and J. Baltes, "A comprehensive survey on humanoid robot development," The Knowledge Engineering Review, vol. 34, 2019, DOI: 10.1017/S0269888919000158.
  10. G. Ficht, H. Farazi, A. Brandenburger, D. Rodriguez, D. Pavlichenko, P. Allgeuer, M. Hosseini, and S. Behnke, "NimbRo-OP2X: Adult-sized open-source 3D printed humanoid robot," 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 2018, DOI: 10.1109/HUMANOIDS.2018.8625038.
  11. T. Jung, J. Lim, H. Bae, K. K. Lee, H.-M. Joe, and J. H. Oh, "Development of the humanoid disaster response platform DRC-HUBO+," IEEE Transactions on Robotics, vol. 34, no. 1, pp. 1-17, 2018, DOI: 10.1109/TRO.2017.2776287.
  12. J. Lim, I. Lee, I. Shim, H. Jung, H. M. Joe, H. Bae, O. Sim, J. H. Oh, T. Jung, S. Shin, K. Joo, M. Kim, K. Lee, Y. Bok, D.-G. Choi, B. Cho, S. Kim, J. Heo, I. Kim, J. Lee, I. S. Kwon, and J.-H. Oh, "Robot system of DRC-HUBO+ and control strategy of team KAIST in DARPA Robotics Challenge finals," Journal of Field Robotics, vol. 34, no. 4, pp. 802-829, 2017, DOI: 10.1002/rob.21673.
  13. S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, and R. Tedrake, "Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot," Autonomous Robots, vol. 40, no. 3, pp. 429-455, 2016, DOI: 10.1007/s10514-015-9479-3.
  14. Z. Yu, Q. Huang, G. Ma, X. Chen, W. Zhang, J. Li, and J. Gao, "Design and development of the humanoid robot BHR-5," Advances in Mechanical Engineering, vol. 6, 2014, DOI: 10.1155/2014/852937.
  15. K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. I. Nakaoka, and S. Kajita, "Cybernetic human HRP-4C," 2009 9th IEEE-RAS International Conference on Humanoid Robots, Paris, France, 2009, DOI: 10.1109/ICHR.2009.5379537.
  16. S. Lohmeier, T. Buschmann, and H. Ulbrich, "Humanoid robot LOLA," 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, DOI: 10.1109/ROBOT.2009.5152578.
  17. Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H. O. Lim, and A. Takanishi, "Development of a new humanoid robot WABIAN-2," 2006 IEEE International Conference on Robotics and Automation(ICRA), Orlando, FL, USA, 2006, DOI: 10.1109/ROBOT.2006.1641164.
  18. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, "The intelligent ASIMO: System overview and integration," IEEE/RSJ international conference on intelligent robots and systems, Lausanne, Switzerland, 2002, DOI: 10.1109/IRDS.2002.1041641.
  19. F. Ferro and L. Marchionni, "Reem: A humanoid service robot," ROBOT2013: First Iberian Robotics Conference, pp. 521-525, 2014, DOI: 10.1007/978-3-319-03413-3_38.
  20. W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, P. Mihelich, E. Marder-Eppstein, M. Muja, V. Eruhimov, T. Foote, J. Hsu, R. B. Rusu, B. Marthi, G. Bradski, K. Konolige, B. Gerkey, and E. Berger, "Autonomous door opening and plugging in with a personal robot," 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 2010, DOI: 10.1109/ROBOT.2010.5509556.
  21. J. J. M. Lunenburg, S. van den Dries, L. F. Bento Ferreira, and M. J. G. van de Molengraft, "Tech United Eindhoven@ Home 2015 team description paper," RoboCup@ Home League Team Descriptions for the Competition in Hefei, 2015, [Online], http://robocup2015.oss-cn-shenzhen.aliyuncs.com/TeamDescr iptionPapers/RoboCup@Home/RoboCup_Symposium_2015_submission_147.pdf.
  22. C. Borst, T. Wimbock, F. Schmidt, M. Fuchs, B. Brunner, F. Zacharias, P. R. Giordano, R. Konietschke, W. Sepp, S. Fuchs, C. Rink, A. Albu-Schaffer, and G. Hirzinger, "Rollin' justin-mobile platform with variable base," 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, DOI: 10.1109/ROBOT.2009.5152586.
  23. A. Nikkhah, A. Yousefi-Koma, R. Mirjalili, and H. M. Farimani, "Design and implementation of small-sized 3d printed surena-mini humanoid platform," 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 2017, DOI: 10.1109/ICRoM.2017.8466166.
  24. M. Lapeyre, P. Rouanet, J. Grizou, S. Nguyen, F. Depraetre, A. Le Falher, and P. Y. Oudeyer, "Poppy project: open-source fabrication of 3D printed humanoid robot for science, education and art," Digital Intelligence, 2014, [Online], https://hal.inria.fr/hal-01096338.
  25. I. Ha, Y. Tamura, H. Asama, J. Han, and D. W. Hong, "Development of open humanoid platform DARwIn-OP," SICE Annual Conference, Tokyo, Japan, 2011, [Online], https://ieeexplore.ieee.org/abstract/document/6060333.
  26. G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and L. Montesano, "The iCub humanoid robot: An open-systems platform for research in cognitive development," Neural Networks, vol. 23, pp. 8-9, 2010, DOI: 10.1016/j.neunet.2010.08.010.
  27. D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade, B. Marnier, J. Serre, and B. Maisonnier, "Mechatronic design of NAO humanoid," 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, DOI: 10.1109/ROBOT.2009.5152516.
  28. H. Ishiguro, T. Ono, M. Imai, T. Maeda, T. Kanda, and R. Nakatsu, "Robovie: an interactive humanoid robot," Industrial Robot, 2001, DOI: 10.1108/01439910110410051.
  29. L. Kunze, T. Roehm, and M. Beetz, "Towards Semantic Robot Description Languages", IEEE International Conference On Robotics and Automation, Shanghai, China, 2011, DOI: 10.1109/ICRA.2011.5980170.
  30. K. H. Lee, H. Woo, and T. Suk, "Data reduction methods for reverse enginerring,"The International Journal of Advanced Manufacturing Technology, vol. 17, no. 10, pp. 735-743, 2001, DOI: 10.1007/s001700170119.
  31. V. Sinha, F. Doucet, C. Siska, R. Gupta, S. Liao, and A. Ghosh, "YAML: a tool for hardware design visualization and capture," International Symposium on System Synthesis, Madrid, Spain, 2000, DOI: 10.1109/ISSS.2000.874023.
  32. Open Source Robotics Foundation, [Online], http://wiki.ros.org/rqt, Accessed: 0303, 2021.
  33. J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, "Deep object pose estimation for semantic robotic grasping of household objects," arXiv:1809.10790, 2018, [Online], https://arxiv.org/abs/1809.10790.
  34. B. Zuo, J. Chen, L. Wang, and Y. Wang, "A reinforcement learning based robotic navigation system," 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 2014, DOI: 10.1109/SMC.2014.6974463.
  35. L. Tai, G. Paolo, and M. Liu, "Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017, DOI: 10.1109/IROS.2017.8202134.
  36. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidieland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, "Human-level control through deep reinforcement learning," Nature, vol. 518, no. 7540, pp. 529-533, 2015, DOI: 10.1038/nature14236.
  37. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, "Continuous control with deep reinforcement learning," arXiv:1509.02971, 2015, [Online], https://arxiv.org/abs/1509.02971.