• Title/Summary/Keyword: Human operator

Search Result 452, Processing Time 0.031 seconds

Prediction of Whole Body Vibration for CE Operatorsusing the Vertical Human Body Model (수직 인체 모델을 이용한 건설 중장비 운전자의 전신진동 예측)

  • Ham, Jeonghoon;Kim, Sunghwan;Kang, Hyunseok;Park, Sangkyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.516-517
    • /
    • 2013
  • Whole body vibration is very important for operators in construction equipment (CE) industry. There is ISO 2631 regulation to protect operators of CE. Recently WBV is one of critical performance parameters of CE to give operators much better comfortable working environment. And there are many kinds of numerically simplified human body model for the motor industry. We applied one human body model in ISO 5982 for the CE development at early stage. And we've checked the validity of this model to consider WBV by the operator comfort point of view.

  • PDF

Development of a Human Interface System for the IMS, - Application of the Teleoperation System - (IMS를 위한 Human Interface 시스템 개발 - 원격제어 시스템의 활용 -)

  • 차인혁;한창수;이병주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.156-164
    • /
    • 1998
  • IMS is a more advanced manufacturing system than FMS. However, IMS do not have sufficient performance for the work in the various and uncertain environment, because of the difficulty of the work and occurrence of the unexpected condition. If IMS is hard to work properly, teleoperation system can support it by using the human's consideration and judgment. The master mechanism is a basic component of the teleoperation system and the development of the useful one is important for efficiency of the work. A master mechanism of exoskeleton type can increase the work efficiency, mobility and harmony between a working robot and an operator. This paper describes an arm-harness of exoskeleton type, which is able to drive a robot according to judgment. This device is applied to a robot system for evaluating the system performance through the experiment.

  • PDF

Modified GOMS-Model for Mobile Computing (모바일 작업을 위한 수정된 GOMS-model에 대한 연구)

  • Lee, Suk-Jae;Myung, Ro-Hae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.2
    • /
    • pp.85-93
    • /
    • 2009
  • GOMS model is a cognitive modeling method of human performance based on Goal, Operators, Methods, Selection rules. GOMS model was originally designed for desktop environment so that it is difficult for GOMS model to be implemented into the mobile environment. In addition, GOMS model would be inaccurate because the original GOMS model was based on serial processing, excluding one of most important human information processing characteristics, parallel processing. Therefore this study was designed to propose a modified GOMS model including mobile computing and parallel processing. In order to encompass mobile environment, an operator of 'look for' was divided into 'visual move to' and 'recognize' whereas 'point to' and 'click' were combined into 'tab.' The results showed that newly introduced operators were necessary to estimate more accurate mobile computing behaviors. In conclusion, modified-GOMS model could predict human performance more accurately than the original GOMS model in the mobile computing environment.

A THERP Application for Assessing Human Error Rates (THERP의 인간오류평가에 대한 적용연구)

  • Jae, Moo-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.173-177
    • /
    • 2002
  • THERP (Technique for Human Error Rate Prediction) methodology has been widely used for probabilistic safety assessments. The NUREG report involving this methodology is also called the HRA handbook. The THERP assumes that all actions involved in implementing a task are considered as components. In this paper human error rates associated with maintenance are evaluated by the THERP methodology. A gas governor system is used as an example which is also a risky system like nuclear power plants. It is also demonstrated that this approach is flexible in that it can be applied to any operator actions related to test and maintenance.

A Study of Human System Integration Methodology For the Mobile Industry Sustainability System Evaluation Model Design (모바일산업 지속가능 시스템 평가모델 설계를 위한 인간시스템통합 (HSI) 방법론 연구)

  • Kim, Sang Jin;Cha, Woo Chang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2021
  • The aim of this study is to propose the design suitable for sustainability evaluation model of the mobile industry considering system process (SEP). Although a quantitative evaluation was conducted on the link between the national sustainability report and the mobile industry, it was confirmed that it was difficult to identify stakeholders. So it is necessary to develop the design process suitable for the more operator-specific interfaces. The Human System Integration (HSI) methodology was proposed through linkage with work domain analysis. Agile methodology and Resilience engineering methodology were added for sustainable model design. The proposed sustainability system evaluation model is applied so that it can be easily used in all industries.

Human-in-the-loop experiments design for workload effectiveness verification of multiple-UAV operators (복수무인기 운용자의 임무과부하지표 효용성 검증을 위한 human-in-the-loop 실험 설계 및 구현)

  • Lim, Hyung-Jin;Choi, Seong-Hwan;Shin, Eun-Chul;Oh, Jang-Jin;Kim, Byoung Soo;Kim, Seungkeun;Yang, Ji Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.284-291
    • /
    • 2017
  • There is no doubt that advances in UAV technology have improved military performance. However, these advances require humans to adapt to new and complex operational systems. UAV has been rapidly expanding to a variety of fields such as reconnaissance, transportation, communication and aerial photographing recently. Also, with the development of UAV automation technology, one operator is able to supervisory-control multiple-UAVs. However, as the number of assigned UAV increases, the amount of information increases and this results in the workload of the operator increasing and deterioration in controlling performance. Accordingly, there is a need for a model to determine the level of overload an operator may encounter with regard to multiple-UAV but nationally this kind of research is currently lacking. Therefore, this paper provides an experimental platform for evaluating workload index effectiveness integrating multiple-UAV operational environments, GCS, and eye-tracking system followed by a limited survey of domestic and international studies of multi-UAV overload studies.

Study on Exposure Dose and Image Quality of Operator Using Shielding Material in Neuro Interventional Radiology (뇌혈관 중재적 시술에서 차폐체를 이용한 시술자의 피폭선량과 화질에 관한 연구)

  • Kim, Dae-ho;Kim, Sang-hyun;Lee, Young-jin;Lim, Jong-chun;Han, Dong-kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.579-587
    • /
    • 2017
  • Although interventional procedures use very low tube currents, there is a high risk of exposure to radiation as well as the operator due to long-term radiation exposure. The purpose of this study is to investigate the effects of radiation dose on the quality of the operator by measuring the dose received by the operator in the interventional procedure of the cerebral vascular system and finding the shielding material and shielding method which can effectively shield the exposure from the medical radiation. And to find a way to minimize it to the extent that it does not. As a result, when the newly designed shielding system with Nano Tungsten material was used, it was confirmed that the mean dose was reduced by 7.95% on average by the operator. Also, the PSNR results were measured to be 38.44 dB when using the designed shielding material, and it was confirmed that Nano Tungsten does not affect the image quality. In conclusion, the Nano Tungsten shielding material proved to be capable of significantly reducing the operator radiation dose, without affecting the image quality. The use of the above materials is expected to solve the problems related to the harmfulness and economical efficiency of the human body and the environment, which have recently become an issue of shielding materials.

Haptics for Human-Machine Interaction at The Johns Hopkins University

  • Okamura, Allison M.;Chang, Sung-Ouk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2676-2681
    • /
    • 2003
  • The Haptic Exploration Laboratory at The Johns Hopkins University is currently exploring many problems related to haptics (force and tactile information) in human-machine systems. We divide our work into two main areas: virtual environments and robot-assisted manipulation systems. Our interest in virtual environments focuses on reality-based modeling, in which measurements of the static and dynamic properties of actual objects are taken in order to produce realistic virtual environments. Thus, we must develop methods for acquiring data from real objects and populating pre-defined models. We also seek to create systems that can provide active manipulation assistance to the operator through haptic, visual, and audio cues. These systems may be teleoperated systems, which allow human users to operate in environments that would normally be inaccessible due to hazards, distance, or scale. Alternatively, cooperative manipulation systems allow a user and a robot to share a tool, allowing the user to guide or override the robot directly if necessary. Haptics in human-machine systems can have many applications, such as undersea and space operations, training for pilots and surgeons, and manufacturing. We focus much of our work on medical applications.

  • PDF

The Selection of Human factors Evaluation Criteria for Information Display on VDT using AHP (AHP를 이용한 개량형 정보 표시 평가 항목의 중요도 선정에 관한 연구)

  • 차우창;장성필
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.1
    • /
    • pp.109-120
    • /
    • 2004
  • In large scale complex system such as a nuclear power plant, it is important to select guidelines and/or checklist to evaluate the system performance, especially human performance for visual information while the number of evaluation items of the guidelines and checklist is voluminous. This paper presents the methodology and experiment for the relative weights or priority selection of evaluation items on the advanced information display of main control room in a nuclear power plant. To summarize this, 1) many human factors guidelines of Visual Display Terminal(VDT) displays are collected, 2) the collected guidelines are integrated and unified based on some rules in a way to avoid confusion or errors about work performances of operator groups, 3) using the unified guidelines, the more important items are defined when the advanced information indexes are applied by using the Analytic Hierarchy Process(AHP). For employing the AHP, the decisions and response of many human factors evaluation specialists in this field are collected to get the priority order of the evaluation items of VDT. The result of this paper will be applied for the evaluation of the usability of next generation of nuclear power plant which is focused on the visual information display on VDT.

Human Reliability Analysis Using Reliability Physics Models (신뢰도 물리모델을 이용한 인간신뢰도분석 연구)

  • Moo-sung Jae
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • This paper presents a new dynamic human reliability analysis method and its application for quantifying the human error probabilities in implementing accident management actions. The action associated with implementation of the cavity flooding during a station blackout sequence is considered for its application. This method is based on the concept of the quantified correlation between the performance requirement and performance achievement. For comparisons of current HRA methods with the new method, the characteristics of THERP, HCR, and SLIM-MAUD, which m most frequency used method in PSAs, are discussed. The MAAP code and Latin Hypercube sampling technique are used to determine the uncertainty of the performance achievement parameter. Meanwhile, the value of the performance requirement parameter is obtained from interviews. Based on these stochastic obtained, human error probabilities are calculated with respect to the various means and variances of the things. It is shown that this method is very flexible in that it can be applied to any kind of the operator actions, including the actions associated with the implementation of accident management strategies.