• Title/Summary/Keyword: Human operator

Search Result 452, Processing Time 0.023 seconds

ESTIMATING THE OPERATOR'S PERFORMANCE TIME OF EMERGENCY PROCEDURAL TASKS BASED ON A TASK COMPLEXITY MEASURE

  • Jung, Won-Dea;Park, Jin-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.415-420
    • /
    • 2012
  • It is important to understand the amount of time required to execute an emergency procedural task in a high-stress situation for managing human performance under emergencies in a nuclear power plant. However, the time to execute an emergency procedural task is highly dependent upon expert judgment due to the lack of actual data. This paper proposes an analytical method to estimate the operator's performance time (OPT) of a procedural task, which is based on a measure of the task complexity (TACOM). The proposed method for estimating an OPT is an equation that uses the TACOM as a variable, and the OPT of a procedural task can be calculated if its relevant TACOM score is available. The validity of the proposed equation is demonstrated by comparing the estimated OPTs with the observed OPTs for emergency procedural tasks in a steam generator tube rupture scenario.

Reliability Analysis of the Man-Machine System Operating under Different Weather Conditions (기후조건을 고려한 인간-기계체계의 신속도)

  • 이길노;하석태
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.1
    • /
    • pp.76-87
    • /
    • 1997
  • This paper deals with reliability and MTTF analysis of a non-repairable man-machine system operating under different weather conditions. The system consists of a hardware(machine) and a two-operator standby subsystem such as the air combat maneuvering of fighters with dual seat. The failure times for the subsystems follow the exponential distribution with constant parameter. By considering not only the effect on hardware component but also the weather conditions and human performance factors such as the operator's errors, a Markov model is presented as a method for evaluating the system reliability of time continuous operation tasks. Laplace transforms of the various state probabilities have been derived and then reliability of the system, at any time t, has been computed by inversion process. MTTF has also been computed.

  • PDF

A Review on Measurement and Applications of Situation Awareness for an Evaluation of Korea Next Generation Reactor Operator Performance (상황인식에 대한 측정 및 차세대 원자로 운전원 성능 평가에서의 활용방법에 관한 이론 연구)

  • Lee, Dhong-Ha;Lee, Hyun-Chul
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.751-758
    • /
    • 2000
  • Situation awareness is defined as a person's perception of the elements of the environment within a volume of time and space, the comprehension of their meaning and the projection of their status in the near future. Situation awareness is important in attempting to evaluate human behavior in operating complex systems such as aircraft, air traffic control, and nuclear power plant systems. From the literatures this study reviews the relationship between situation awareness and numerous individual, system and environmental factors, and also reviews the methodologies for the empirical measurement of situation awareness applicable to Korea Next Generation Reactor (KNGR) design project. Attention, working memory, workload, stress, system complexity, and automation are presented as critical factors limiting operator's situation awareness. Mental models and goal-directed behavior are hypothesized as important mechanisms overcoming these limits. This study summarized hypothesized guidelines for interface design to improve situation awareness of reactor operators. Some of the guidelines should be tested in the KNGR evaluation experiments in the future.

  • PDF

Image Hashing based Identifier with Entropy Operator (엔트로피 연산자를 이용한 영상 해싱 기반 인식자)

  • Park, Je-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.93-96
    • /
    • 2021
  • The desire for a technology that can mechanically acquire 2D images starting with the manual method of drawing has been making possible a wide range of modern image-based technologies and applications over a period. Moreover, this trend of the utilization of image-related technology as well as image-based information is likely to continue. Naturally, as like other technology areas, the function that humans produce and utilize by using images needs to be automated by using computing-based technologies. Surprisingly, technology using images in the future will be able to discover knowledge that humans have never known before through the information-related process that enables new perception, far beyond the scope of use that human has used before. Regarding this trend, the manipulation and configuration of massively distributed image database system is strongly demanded. In this paper, we discuss image identifier production methods based on the utilization of the image hashing technique which especially puts emphasis over an entropy operator.

Human-Robot Cooperative Control for Construction Robot (건설로봇용 인간-로봇 협업 제어)

  • Lee, Seung-Yeol;Lee, Kye-Young;Lee, Sang-Heon;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.285-294
    • /
    • 2007
  • Previously, ASCI(Automation System for Curtain-wall Installation) which combined with a multi-DOF manipulator to a mini-excavator was developed and applied on construction site. As result, the operation by one operator and more intuitive operation method are proposed to improve ASCI's operation method which need one person with a remote joystick and another operating an excavator. The human-robot cooperative system can cope with various and untypical constructing environment through the real-time interacting with a human, robot and constructing environment simultaneously. The physical power of a robot system helps a human to handle heavy construction materials with relatively scaled-down load. Also, a human can feel and response the force reflected from robot end effecter acting with working environment. This paper presents the feasibility study regarding the application of the proposed human-robot cooperation control for construction robot through experiments on a 2DOF manipulator.

Importance of Human Error to Prevent Industrial Accidents (산업 사고 예방을 위한 인적오류의 중요성)

  • Lee, Kwan-Suk;Lee, Young-Kwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.151-160
    • /
    • 2011
  • There have been many efforts to prevent accidents in Korea for the last 25 years. Many measures in the area of hardware sciences including electrical, mechanical, chemical engineering, etc. were applied to eliminate or at least reduce causes of accidents. However, the accidents rate has not been reduced much despite of these measures. This research aimed to find real causes of these accidents and to suggest a comprehensive model that can mainly be applied to industrial fields to find potential or existence of human errors during the pre-installation stage or after an accident. We tried to explain sequences of an operator's information process that might cause human errors on one hand, and life cycle stages of facilities involved when human errors occur on the other hand. With this comprehensive model presented in this research, one can follow up the sequence of human errors caused by operators. Further, errors made at the design stage which could be a main cause of accidents can be tracked. It is recommended that this comprehensive model should be used to prevent human errors in industrial fields since safety personnel can easily find out errors or error potentials through the life cycle stages of manmachine facilities.

The Application of Project control Techniques to Process Control: The Effect of Temporal Information on Human Monitoring Tasks

  • Parush, A.;Shtub, A.;Shavit, D.
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • We studied the use of time-related information, with and without prediction, to support human operators performing moni-toring and control tasks in the process. Based on monitoring and control techniques used for Project Management we developed a display design for the process industries. A simulated power plant was used to test the hypothesis that availability of predictions along with information on past trends can improve the performances of the human operator handling faults. Several designs of dis-plays were tested in the experiment in which human operators had to detect and handle two types of faults(local and systems wide) in the simulated electricity generation process. Analysis of the results revealed that temporal data, with and without prediction, signifi-cantly reduced response time. Our results encourage the integration of temporal information and prediction in displays used for the control processes to enhance the capabilities of the human operators. Based on the analysis we proposed some guidelines for the de-signer of the human interface of a process control system.

  • PDF

Inter-relationships between performance shaping factors for human reliability analysis of nuclear power plants

  • Park, Jooyoung;Jung, Wondea;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.87-100
    • /
    • 2020
  • Performance shaping factors (PSFs) in a human reliability analysis (HRA) are one that may influence human performance in a task. Most currently applicable HRA methods for nuclear power plants (NPPs) use PSFs to highlight human error contributors and to adjust basic human error probabilities (HEPs) that assume nominal conditions of NPPs. Thus far, the effects of PSFs have been treated independently. However, many studies in the fields of psychology and human factors revealed that there may be relationships between PSFs. Therefore, the inter-relationships between PSFs need to be studied to better reflect their effects on operator errors. This study investigates these inter-relationships using two data sources and also suggests a context-based approach to treat the inter-relationships between PSFs. Correlation and factor analyses are performed to investigate the relationship between PSFs. The data sources are event reports of unexpected reactor trips in Korea and an experiment conducted in a simulator featuring a digital control room. Thereafter, context-based approaches based on the result of factor analysis are suggested and the feasibility of the grouped PSFs being treated as a new factor to estimate HEPs is examined using the experimental data.

Study on Screening Examination of Small Boat Operator's Certificate of Competency (소형선박조종사 면허시험 전형제도에 관한 연구)

  • KIM, Wook-Sung;KIM, Yong-Bok;KIM, Jong-Hwa;KIM, Sung-Ki;KIM, Seok-Jae;PARK, Tae-Geon;RYU, Kyong-Jin;LEE, Yoo-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1523-1531
    • /
    • 2015
  • Small boat operator's certificate of competency took up 39.0% of total license holders and required for at least 19,000 boats in 2013, was proposed the improvement items by reviewing the acts and criteria related to the current test and analyzed the questions of set at examinations. About 31% of questions of the current written test are unsuitable for the target boat and operational knowledge of the operator. It is appropriate that the subject categorization criteria and contents of the subjects will be improved to include practical details related to safe ship operation, and the number of questions increased according to each subject category in amended examination after January 1st, 2017. The interview test should be improved so that the questions can be forwarded in a clear manner through formulation of practical problems, photos, etc. considering the real situations such as high age/low education status of testee and it is necessary to lengthen the interview time per testee. The test and interview personnel should consist of a human resource pool with experience in small boat operator training and workers of related areas familiar with field terminology. Furthermore, the test should be divided into small boats of 2 to 5 tons and those exceeding 5 tons according to the tonnage of small boats.

Obstacle avoidance of Mobile Robot with Virtual Impedance (가상임피던스를 이용한 원격 이동로봇의 장애물회피)

  • Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.451-456
    • /
    • 2009
  • In this paper, a virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.