• Title/Summary/Keyword: Human lung adenocarcinoma cells

Search Result 85, Processing Time 0.024 seconds

Anti Tumoral Properties of Punica granatum (Pomegranate) Seed Extract in Different Human Cancer Cells

  • Seidi, Khaled;Jahanban-Esfahlan, Rana;Abasi, Mozhgan;Abbasi, Mehran Mesgari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1119-1122
    • /
    • 2016
  • Background: Punica granatum (PG) has been demonstrated to possess antitumor effects on various types of cancer cells. In this study, we determined antiproliferative properties of a seed extract of PG (PSE) from Iran in different human cancer cells. Materials and Methods: A methanolic extract of pomegranate seeds was prepared. Total phenolic content (TPC) and total flavonoid content (TFC) were assessed by colorimetric assays. Antioxidant activity was determined with reference to DPPH radical scavenging activity. The cytotoxicity of different doses of PSE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) was evaluated by MTT assays with A549 (lung non small cell carcinoma), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses ($5-1000{\mu}g/ml$). In all studied cancer cells, PSE reduced the cell viability to values below 23%, even at the lowest doses. In all cases, IC50 was determined at doses below $5{\mu}g/ml$. In this regard, SKOV3 ovarian cancer cells were the most responsive to antiproliferative effects of PSE with a maximum mean growth inhibition of 86.8% vs. 82.8%, 81.4% and 80.0% in MCF-7, PC-3 and A549 cells, respectively. Conclusions: Low doses of PSE exert potent antiproliferative effects on different human cancer cells SKOV3 ovarian cancer cells as most and A549 cells ar least responsive regarding cytotoxic effects. However, the mechanisms of action need to be addressed.

Anti-Proliferative Properties of Cornus mass Fruit in Different Human Cancer Cells

  • Yousefi, Bahman;Abasi, Mozhgan;Abbasi, Mehran Mesgari;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5727-5731
    • /
    • 2015
  • Background: There is a long standing interest in natural compounds especially those with a high polyphenolic content and high scavenging activity for hazardous free radicals. Cornus mas (CM) fruit is well known for its antioxidant activities; however, its toxicity against human cancers needs to be addressed. Here, we investigated selective anticancer effects of CM on different human cancer cells. Materials and Methods: A hydro-alcoholic extract of CM (HECM) was prepared and total phenolic content (TPC) and total flavonoid content (TFC) were determined by colorimetric assays. Antioxidant activity was assessed with respectto DPPH radical scavenging. MTT assays were used to evaluate the cytotoxicity of different doses of CM (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) towards A549 (lung non small cell cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer) and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.05) or very significant (P<0.001) differences were observed in comparison to negative controls at all tested doses ($5-1000{\mu}g/ml$). In all cancer cells, HECM reduced the cell viability to values below 26%, even at the lowest doses. In all cases, $IC_{50}$ was obtained at doses below $5{\mu}g/ml$. The mean growth inhibition was 81.8%, 81.9%, 81.6% and 79.3% in SKOV3, MCF-7, PC-3 and A549 cells, respectively. Conclusions: Altogether, to our best knowledge, this is a first study that evaluated toxicity of a HECM with high antioxidant activity in different human cancer cells in vitro. Our results indicated that a hydro-alcoholic extract of CM possesses high potency to inhibit proliferation of different tumor cells in a dose independent manner, suggesting that an optimal biological dose is more important and relevant than a maximally tolerated one.

Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway

  • Masraksa, Wuttipong;Tanasawet, Supita;Hutamekalin, Pilaiwanwadee;Wongtawatchai, Tulaporn;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Non-small cell lung cancer is mostly recognized among other types of lung cancer with a poor prognosis by cause of chemotherapeutic resistance and increased metastasis. Luteolin has been found to decrease cell metastasis. However, its underlying mechanisms remain unresolved. The objective of this study was to examine the effect (and its mechanism) of luteolin on the migration and invasion of human non-small cell lung cancer A549 cells. MATERIALS/METHODS: Cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Wound healing and transwell assays were evaluated to assess migration and invasion, respectively. Western blot analysis and immunofluorescence were further performed to investigate the role of luteolin and its mechanisms of action. RESULTS: Administration with up to 40 μM luteolin showed no cytotoxic activity on lung cancer A549 cells or non-cancer MRC-5 cells. Additionally, luteolin at 20-40 μM significantly suppressed A549 cells' migration, invasion, and the formation of filopodia in a concentration-dependent manner at 24 h. This is similar with western blot analysis, which revealed diminished the phosphorylated focal adhesion kinase (pFAK), phosphorylated non-receptor tyrosine kinase (pSrc), Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division control protein 42 (Cdc42), and Ras homolog gene family member A (RhoA) expression levels. CONCLUSIONS: Overall, our data indicate that luteolin plays a role in controlling lung cancer cells' migration and invasion via Src/FAK and its downstream Rac1, Cdc42, and RhoA pathways. Luteolin might be considered a promising candidate for suppressing invasion and metastasis of lung cancer cells.

Immunohistochemical Staining of Insulin-like Growth Factor-1 in Human Lung Cancer Cells (폐암의 조직학적 형태에 따른 인슐린양 성장인자-1의 면역조직학적 염색의 비교)

  • Park, Ji-Hyun;Kang, Myoung-Jae;Lee, Heung-Bum;Lee, Yong-Chul;Rhee, Yang-Kuen
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.3
    • /
    • pp.324-330
    • /
    • 2000
  • Objective : Lung cancer arises after a series of morphological changes, which take several years to progress from normal epithelium to invasive cancer. Multiple molecular changes and growth factor production have been documented in lung cancers, both small cell and non-small cell types. Insulin-like growth factors(IGFs) are important mitogenic and anabolic peptides, both in vivo and in vitro, and are thought to be significant autocrine-paracrine factors involved in normal and malignant cell proliferation. In this study, the degree of expression of IGF-1 on the immunohistochemical staining in human non-small cell lung cancer(NSCLC) cells and small cell lung cancer (SCLC) cells were investigated. Methods : Immunohistochemical staining for IGF-1 was performed in 15 cases of small cell carcinoma, 15 cases of squamous cell carcinoma, 15 cases of adenocarcinoma, and 12 cases of bronchoalveolar carcinoma. Results : The expression of IGF-1 on the immunohistochemical staining significantly increased in NSCLC cells than in SCLC cells. Conclusion : These results suggest the expression of IGF-1 in human lung cancer cells. The immunohistochemical staining of IGF-1 in lung cancer cell lines may assist in the differentiation of NSCLC and SCLC.

  • PDF

Enhancement of Anticancer Activity of Acer mono Aqueous Extracts by Nano-Encapsulation Process (고로쇠 수피 수용성 추출물의 나노입자화를 통한 항암활성 증진)

  • Kim, Ji-Seon;Jeong, Myoung-Hoon;Choi, Woon-Yong;Seo, Yong-Chang;Cho, Jeong Sub;Lee, Hyeon Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • Anticancer activity of Acer mono aqueous extracts was enhanced by nano-encapsulation process of gelatin. The cytotoxicity on human normal lung cell (HEL299) of the extracts from WE (water extract at 100) showed 23.51%, lower than that from NE (nano-encapsulatioin of water extract of Acer mono) in adding the maximum concentration of 1.0 mg/mL. NE showed more potent scavenging effect as 73.15% than the WE. On SOD-like test, the NE showed highest activity as 32.33% at 1.0 mg/mL concentration. Human stomach adenocarcinoma, liver adenocarcinoma, breast adenocarcinoma and lung adenocarcinoma cell growth were inhibited up to about 59-73%, in adding 1.0 mg/mL of NE. NE was 15% higher than conventional water extraction. Among several cancer cell lines (stomach adenocarcinoma, liver adenocarcinoma), the growth of digestive related cancer cells were most effectively inhibited as about 71-73%. The size of nano particles was in the ranges of 100-200 nm, which can effectively the penetrate into the cells, it was observed by real time confocal microscope. It tells that the aqueous extracts of Acer mono bark could be definitely enhanced by nano-encapsulation process.

Anti Proliferative Properties of Melissa officinalis in Different Human Cancer Cells

  • Jahanban-Esfahlan, Akram;Modaeinama, Sina;Abasi, Mozhgan;Abbasi, Mehran Mesgari;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5703-5707
    • /
    • 2015
  • Background: Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of their antioxidative properties. Melissa officinalis L. (MO), an aromatic and medicinal plant, is well known in thios context. However, toxicity against cancer cells has not been fully studied. Here, we investigated the selective anticancer effects of an MO extract (MOE) in different human cancer cells. Materials and Methods: a hydro-alcoholic extract of MO was prepared and total phenolic content (TPC) and total flavonoid content (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. MTT assays were used to evaluate cytotoxicity of different doses of MOE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) towards A549 (lung non small cell cancer cells), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses ($5-1000{\mu}g/ml$). In all cancer cells, MOE reduced the cell viability to values below 33%, even at the lowest doses. In all cases, $IC_{50}$ values were below $5{\mu}g/ml$. The mean growth inhibition was 73.1%, 86.7%, 79.9% and 77.8% in SKOV3, MCF-7 and PC-3 and A549 cells, respectively. Conclusions: Our results indicate that a hydro-alcoholic extract of MO possess a high potency to inhibit proliferation of different tumor cells in a dose independent manner, suggesting that an optimal biological dose is more important than a maximally tolerated one. Moreover, the antiprolifreative effect of MO seems to be tumor type specific, as hormone dependant cancers were more sensitive to antitumoral effects of MOE.

Apoptotic Effects of the B Subunit of Bacterial Cytolethal Distending Toxin on the A549 Lung Cancer Cell Line

  • Yaghoobi, Hajar;Bandehpour, Mojgan;Kazemi, Bahram
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.299-304
    • /
    • 2016
  • Cytolethal distending toxin (CDT) is a secreted tripartite genotoxin produced by many pathogenic gram-negative bacteria. It is composed of three subunits, CdtA, CdtB and CdtC, and CdtB-associated deoxyribonuclease (DNase) activity is essential for the CDT toxicity. In the present study, to design a novel potentially antitumor drug against lung cancer, the possible mechanisms of cdtB anticancer properties were explored in the A549 human lung adenocarcinoma cell line. A recombinant plasmid pcDNA3.1/cdtB was constructed expressing CdtB of human periodontal bacterium Aggregatibacter actinomycetemcomitans and investigated for toxic properties in A549 cells and possible mechanisms. It was observed that plasmid pcDNA3.1/cdtB caused loss of cell viability, morphologic changes and induction of apoptosis. Furthermore, measurement of caspase activity indicated involvement of an intrinsic pathway of cell apoptosis. Consequently, the recombinant plasmid pcDNA3.1/cdtB may have potential as a new class of therapeutic agent for gene therapy of lung cancer.

Transcription Profiles of Human Cells in Response to Sodium Arsenite Exposure

  • Lee, Te-Chang;Konan Peck;Yih, Ling-Huei
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.59-69
    • /
    • 2001
  • Arsenic exposure is associated with several human diseases, including cancers, atherosclerosis, hypertension, and cerebrovascular diseases. In cultured cells, arsenite, an inorganic arsenic com-pound, was demonstrated to interfere with many physiological functions, such as enhancement of oxidative stress, delay of cell cycle progression, and induction of structural and numerical changes of chromosomes. The objective of this study is to investigate the effects of arsenic exposure on gene expression profiles by colorimetric cDNA microarray technique. HFW (normal human diploid skin fibroblasts), CL3 (human lung adenocarcinoma cell line), and HaCaT (immortalized human keratinocyte cell line) were treated with 5 $\mu\textrm{M}$ or 10 $\mu\textrm{M}$ sodium arsenite for 6 or 16 h, respectively. By a dual-color detection system, the expression profile of arsenite-treated cultures was compared to that of control cultures. Several genes expressed differentially were identified on the microarray membranes. For example, MDM2, SWI/SNF, ubiquitin specific protease 4, MAP3K11, RecQ protein-like 5, and Ribosomal protein Ll0a were consistently induced in all three cell types by arsenite, whereas prohibitin, cyclin D1, nucleolar protein 1, PCNA, Nm23, and immediate early protein (ETR101) were apparently inhibited. The present results suggest that arsenite insults altered the expression of several genes participating in cellular responses to DNA damage, stress, transcription, and cell cycle arrest.

  • PDF

Anti-Proliferative Effects of Hesa-A on Human Cancer Cells with Different Metastatic Potential

  • Jahanban-Esfahlan, Rana;Abasi, Mozhgan;Sani, Hakimeh Moghaddas;Abbasi, Mehran Mesgari;Akbarzadeh, Abolfazl
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6963-6966
    • /
    • 2015
  • Background: During the past few years, Hesa-A, a herbal-marine mixture, has been used to treat cancer as an alternative medicine in Iran. Based on a series of studies, it is speculated that Hesa-A possesses special cytotoxic effects on invasive tumors. To test this hypothesis, we investigated the selective anticancer effects of Hesa-A on several cancer cell lines with different metastatic potential. Materials and Methods: Hesa-A was prepared in normal saline as a stock solution of 10 mg/ml and further diluted to final concentrations of $100{\mu}/ml$, $200{\mu}g/ml$, $300{\mu}g/ml$ and $400{\mu}g/ml$. MTT-based cytotoxicity assays were performed with A549 (lung non small cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. Results: All treated cancer cells showed significant (P<0.01) or very significant (P<0.0001) differences in comparison to negative control at almost all of the tested doses ($100-400{\mu}g/ml$). At the lower dose ($100{\mu}g/ml$), Hesa-A reduced cell viability to 66%, 45.3%, 35.5%, 33.2% in SKOV3, A549, PC-3 and MCF-7 cells, respectively. Moreover, at the highest dose ($400{\mu}g/ml$), Hesa-A resulted in 88.5%, 86.6%, 84.9% and 79.3% growth inhibition in A549, MCF-7, PC-3 and SKOV3 cells, respectively. Conclusions: Hesa-A exert potent cytotoxic effects on different human cancer cells, especially those with a high metastatic potential.

3-Deoxysappanchalcone Inhibits Cell Growth of Gefitinib-Resistant Lung Cancer Cells by Simultaneous Targeting of EGFR and MET Kinases

  • Jin-Young Lee;Seung-On Lee;Ah-Won Kwak;Seon-Bin Chae;Seung-Sik Cho;Goo Yoon;Ki-Taek Kim;Yung Hyun Choi;Mee-Hyun Lee;Sang Hoon Joo;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.446-455
    • /
    • 2023
  • The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.