• 제목/요약/키워드: Human lung

검색결과 1,370건 처리시간 0.028초

Biomarkers for the lung cancer diagnosis and their advances in proteomics

  • Sung, Hye-Jin;Cho, Je-Yoel
    • BMB Reports
    • /
    • 제41권9호
    • /
    • pp.615-625
    • /
    • 2008
  • Over a last decade, intense interest has been focused on biomarker discovery and their clinical uses. This interest is accelerated by the completion of human genome project and the progress of techniques in proteomics. Especially, cancer biomarker discovery is eminent in this field due to its anticipated critical role in early diagnosis, therapy guidance, and prognosis monitoring of cancers. Among cancers, lung cancer, one of the top three major cancers, is the one showing the highest mortality because of failure in early diagnosis. Numerous potential DNA biomarkers such as hypermethylations of the promoters and mutations in K-ras, p53, and protein biomarkers; carcinoembryonic antigen (CEA), CYFRA21-1, plasma kallikrein B1 (KLKB1), Neuron-specific enolase, etc. have been discovered as lung cancer biomarkers. Despite extensive studies thus far, few are turned out to be useful in clinic. Even those used in clinic do not show enough sensitivity, specificity and reproducibility for general use. This review describes what the cancer biomarkers are for, various types of lung cancer biomarkers discovered at present and predicted future advance in lung cancer biomarker discovery with proteomics technology.

Inhibitory Effects of Bee Venom on Growth of A549 Lung Cancer Cells via Induction of Death Receptors

  • Jang, Dong Min;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제30권1호
    • /
    • pp.57-70
    • /
    • 2013
  • This study was to investigated the effects of the bee venom on inhibition of cell growth via upregulation of death receptor expression in the A549 human lung cancer cells. Bee venom(1-5 ${\mu}g$/ml) inhibited the growth of A549 lung cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of TNFR1, Fas, death receptors(DR) 3, 4 and 6 was increased in the cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, -9 and Bax was concomitantly increased, but the expression of Bcl-2, NF-${\kappa}B$ were inhibited by treatment with bee venom in A549 cells. Moreover, deletion of DR3, DR4 by small interfering RNA significantly reversed bee venom-induced cell growth inhibitory effect, whereas Apo3L strengthened anti-proliferative effect of bee venom through enhancement of DR3 expression. These results suggest that bee venom should exert anti-tumor effect through induction of apoptotic cell death in lung cancer cells via enhancement of death receptor expression, and that bee venom could be a promising agent for preventing and treating lung cancer.

Infection Source and Epidemiology of Nontuberculous Mycobacterial Lung Disease

  • Jeon, Doosoo
    • Tuberculosis and Respiratory Diseases
    • /
    • 제82권2호
    • /
    • pp.94-101
    • /
    • 2019
  • Nontuberculous mycobacteria (NTM) are ubiquitous organisms that are generally found not only in the natural environment but also in the human engineered environment, including water, soil, and dust. These organisms can form biofilms and can be readily aerosolized because they are hydrophobic owing to the presence of the lipid-rich outer membrane. Aerosolization and subsequent inhalation were the major route of NTM lung disease. Water distribution systems and household plumbing are ideal habit for NTM and the main transmission route from natural water to household. NTM have been isolated from drinking water, faucets, pipelines, and water tanks. Studies that used genotyping have shown that NTM isolates from patients are identical to those in the environment, that is, from shower water, showerheads, tap water, and gardening soil. Humans are likely to be exposed to NTM in their homes through simple and daily activities, such as drinking, showering, or gardening. In addition to environmental factors, host factors play an important role in the development of NTM lung disease. The incidence and prevalence of NTM lung disease are increasing worldwide, and this disease is rapidly becoming a major public health problem. NTM lung disease is associated with substantially impaired quality of life, increased morbidity and mortality, and high medical costs. A more comprehensive understanding of the infection source and epidemiology of NTM is essential for the development of new strategies that can prevent and control NTM infection.

Risk Assessment for Toluene Diisocyanate and Respiratory Disease Human Studies

  • PARK, Robert M.
    • Safety and Health at Work
    • /
    • 제12권2호
    • /
    • pp.174-183
    • /
    • 2021
  • Background: Toluene diisocyanate (TDI) is a highly reactive chemical that causes sensitization and has also been associated with increased lung cancer. A risk assessment was conducted based on occupational epidemiologic estimates for several health outcomes. Methods: Exposure and outcome details were extracted from published studies and a NIOSH Health Hazard Evaluation for new onset asthma, pulmonary function measurements, symptom prevalence, and mortality from lung cancer and respiratory disease. Summary exposure-response estimates were calculated taking into account relative precision and possible survivor selection effects. Attributable incidence of sensitization was estimated as were annual proportional losses of pulmonary function. Excess lifetime risks and benchmark doses were calculated. Results: Respiratory outcomes exhibited strong survivor bias. Asthma/sensitization exposure response decreased with increasing facility-average TDI air concentration as did TDI-associated pulmonary impairment. In a mortality cohort where mean employment duration was less than 1 year, survivor bias pre-empted estimation of lung cancer and respiratory disease exposure response. Conclusion: Controlling for survivor bias and assuming a linear dose-response with facility-average TDI concentrations, excess lifetime risks exceeding one per thousand occurred at about 2 ppt TDI for sensitization and respiratory impairment. Under alternate assumptions regarding stationary and cumulative effects, one per thousand excess risks were estimated at TDI concentrations of 10 - 30 ppt. The unexplained reported excess mortality from lung cancer and other lung diseases, if attributable to TDI or associated emissions, could represent a lifetime risk comparable to that of sensitization.

5-bromoprotocatechualdehyde suppresses growth of human lung cancer cells through modulation of ROS and the AKT/MAPK signaling pathway

  • Jusnseong Kim;Eun-A Kim;Nalae Kang;Seong-Yeong Heo;Soo-Jin Heo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.49-58
    • /
    • 2023
  • Early-stage lung cancer is the deadliest form of the disease. In this study, we investigated the anticancer activity of 5-bromoprotocatechualdehyde (BPCA) extracted from the seaweed Polysiphonia morrowii Harvey (P. morrowii) in lung cancer H460 cells. We extracted P. morrowii powder thrice with 80% aqueous methanol and separated the extract using high-performance liquid chromatography. We then tested BPCA's effects on cell viability, apoptosis, reactive oxygen species (ROS) generation, and protein expression Our results showed that BPCA inhibited tumor cell growth and ROS production and induced apoptosis through mitogen-activated protein kinase (MAPK) and AKT signaling pathways in lung cancer cells. When BPCA was combined with hydrogen peroxide, ROS production and apoptosis increased even further due to the regulation of AKT signaling and JNK-MAPKs pathways. These findings suggest that BPCA induces lung-cancer-cell death through ROS-mediated phosphorylation in AKT/MAPK signaling. This could lead to the development of new and effective treatments for early-stage lung cancer.

Lung Organoid on a Chip: A New Ensemble Model for Preclinical Studies

  • Hyung-Jun Kim;Sohyun Park;Seonghyeon Jeong;Jihoon Kim;Young-Jae Cho
    • International Journal of Stem Cells
    • /
    • 제17권1호
    • /
    • pp.30-37
    • /
    • 2024
  • The lung is a complex organ comprising a branched airway that connects the large airway and millions of terminal gas-exchange units. Traditional pulmonary biomedical research by using cell line model system have limitations such as lack of cellular heterogeneity, animal models also have limitations including ethical concern, race-to-race variations, and physiological differences found in vivo. Organoids and on-a-chip models offer viable solutions for these issues. Organoids are three-dimensional, self-organized construct composed of numerous cells derived from stem cells cultured with growth factors required for the maintenance of stem cells. On-a-chip models are biomimetic microsystems which are able to customize to use microfluidic systems to simulate blood flow in blood channels or vacuum to simulate human breathing. This review summarizes the key components and previous biomedical studies conducted on lung organoids and lung-on-a-chip models, and introduces potential future applications. Considering the importance and benefits of these model systems, we believe that the system will offer better platform to biomedical researchers on pulmonary diseases, such as emerging viral infection, progressive fibrotic pulmonary diseases, or primary or metastatic lung cancer.

Comparison of the Gene Expression Profiles Between Smokers With and Without Lung Cancer Using RNA-Seq

  • Cheng, Peng;Cheng, You;Li, Yan;Zhao, Zhenguo;Gao, Hui;Li, Dong;Li, Hua;Zhang, Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3605-3609
    • /
    • 2012
  • Lung cancer seriously threatens human health, so it is important to investigate gene expression changes in affected individuals in comparison with healthy people. Here we compared the gene expression profiles between smokers with and without lung cancer. We found that the majority of the expressed genes (threshold was set as 0.1 RPKM) were the same in the two samples, with a small portion of the remainder being unique to smokers with and without lung cancer. Expression distribution patterns showed that most of the genes in smokers with and without lung cancer are expressed at low or moderate levels. We also found that the expression levels of the genes in smokers with lung cancer were lower than in smokers without lung cancer in general. Then we detected 27 differentially expressed genes in smokers with versus without lung cancer, and these differentially expressed genes were foudn to be involved in diverse processes. Our study provided detail expression profiles and expression changes between smokers with and without lung cancer.

Analysis of Lung Function Influences by Stimulating Ear Reflex Point Using Voice Analysis (음성 분석을 통한 폐 이혈점 자극이 폐 기능에 미치는 영향 분석)

  • Kim, Bong-Hyun;Cho, Dong-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제37권6C호
    • /
    • pp.520-526
    • /
    • 2012
  • Mostly lung diseases by smoking and air pollution is increasing social interest one of 6 kinds of modern diseases which is difficult functional recovery of damaged lung as dangerous diseases of life extension. Therefore, to reduce suffering from respiratory diseases is usually non-smoking, to do strengthen behavior of lung function. In this paper, we would like to propose method to do investigation by voice analysis technology to apply when lung associated ear acupuncture point stimulus to help strengthen actually lung function. From this, we would like to consider the voice change of before/after in smoking to analyze the impact on the human body to the lungs. Based on this experiment, we would like to investigate numerically quantity data actual improved lung function to analyze of voice character difference of before/after in lung associated ear acupuncture point stimulating.

Sanghuangporus sanghuang extract inhibits the proliferation and invasion of lung cancer cells in vitro and in vivo

  • Weike Wang;Jiling Song;Na Lu;Jing Yan;Guanping Chen
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1070-1083
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Sanghuangporus sanghuang (SS) has various medicinal effects, including anti-inflammation and anticancer activities. Despite the extensive research on SS, its molecular mechanisms of action on lung cancer are unclear. This study examined the impact of an SS alcohol extract (SAE) on lung cancer using in vitro and in vivo models. MATERIALS/METHODS: Different concentrations of SAE were used to culture lung cancer cells (A549 and H1650). A cell counting kit-8 assay was used to detect the survival ability of A549 and H1650 cells. A scratch assay and transwell cell invasion assay were used to detect the migration rate and invasive ability of SAE. Western blot analysis was used to detect the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), cyclin D1, cyclin-dependent kinases 4 (CDK4), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3). Lung cancer xenograft mice were used to detect the inhibiting ability of SAE in vivo. Hematoxylin and eosin staining and immunohistochemistry were used to detect the effect of SAE on the structural changes to the tumor and the expression of Bcl-2, Bax, cyclin D1, CDK4, STAT3, and p-STAT3 in lung cancer xenograft mice. RESULTS: SAE could inhibit lung cancer proliferation significantly in vitro and in vivo without cytotoxicity. SAE suppressed the viability, migration, and invasion of lung cancer cells in a dose and time-dependent manner. The SAE treatment significantly decreased the proapoptotic Bcl-2/Bax ratio and the expression of pro-proliferative proteins Cyclin D1 and CDK4 in vitro and in vivo. Furthermore, SAE also inhibited STAT3 expression. CONCLUSIONS: SAE reduced the cell viability and suppressed cell migration and invasion in human lung cancer cells. Moreover, SAE also exhibited anti-proliferation effects in vivo. Therefore, SAE may have benefits in cancer therapy.

Use of Gas-Sensor Array Technology in Lung Cancer Diagnosis

  • Kim, Young Jun;Yu, Han Young;Baek, In-Bok;Ahn, Chang-Geun;Lee, Bong Kuk;Kim, Yarkyeon;Yoon, Yong Sun;Lim, Ji Eun;Lee, Byeong-Jun;Jang, Won Ik;Park, Jeong Ho;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • 제22권4호
    • /
    • pp.249-255
    • /
    • 2013
  • Gas-sensor array technology, which has been much utilized in the field of food technology by the name of 'electronic nose' is drawing attention in diagnosing lung cancer based on the analysis of the exhaled human breath. Much understanding has been accomplished about the composition of the volatile organic compounds (VOCs) of the human exhaled breath, in spite of some variations depending on research groups due mainly to lack of the standardization of the sensing procedures. Since VOCs may be produced during the process of cellular metabolism, difference in the cellular metabolism between healthy cells and lung cancer cells are expected to be reflected on the composition variation of the exhaled VOCs. Several studies have attempted to apply the gas-sensor array technology to lung cancer analysis using many different types of sensors including metal oxide, carbon black-polymer composite, surface acoustic wave, and gold nanoparticles. In this mini-review VOC as biomarkers, sensor array technology and application of the array technology for the diagnosis of cancer disease have been described.