Acknowledgement
This paper was supported by the Seoul National University Bundang Hospital research fund (No. 02-2021-0007) and the National Research Foundation of Korea Grant funded by the Korean Government (2021K1A4A7A02097757).
References
- Hogan BL, Barkauskas CE, Chapman HA, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 2014;15:123-138 https://doi.org/10.1016/j.stem.2014.07.012
- Gkatzis K, Taghizadeh S, Huh D, Stainier DYR, Bellusci S. Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease. Eur Respir J 2018;52:1800876
- Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc 2019;14:518-540 https://doi.org/10.1038/s41596-018-0104-8
- Wilkinson DC, Alva-Ornelas JA, Sucre JM, et al. Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Transl Med 2017;6:622-633 https://doi.org/10.5966/sctm.2016-0192
- Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 2020;21:571-584 https://doi.org/10.1038/s41580-020-0259-3
- Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010;328:1662-1668 https://doi.org/10.1126/science.1188302
- Clevers H. Stem cells. What is an adult stem cell? Science 2015;350:1319-1320 https://doi.org/10.1126/science.aad7016
- Tian L, Gao J, Garcia IM, Chen HJ, Castaldi A, Chen YW. Human pluripotent stem cell-derived lung organoids: potential applications in development and disease modeling. Wiley Interdiscip Rev Dev Biol 2021;10:e399
- Rock JR, Onaitis MW, Rawlins EL, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 2009;106:12771-12775 https://doi.org/10.1073/pnas.0906850106
- Hofer M, Lutolf MP. Engineering organoids. Nat Rev Mater 2021;6:402-420 https://doi.org/10.1038/s41578-021-00279-y
- Dye BR, Dedhia PH, Miller AJ, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife 2016; :e19732
- Orkin RW, Gehron P, McGoodwin EB, Martin GR, Valentine T, Swarm R. A murine tumor producing a matrix of basement membrane. J Exp Med 1977;145:204-220 https://doi.org/10.1084/jem.145.1.204
- Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater 2020;5:539-551 https://doi.org/10.1038/s41578-020-0199-8
- Lee HJ, Mun S, Pham DM, Kim P. Extracellular matrixased hydrogels to tailoring tumor organoids. ACS Biomater Sci Eng 2021;7:4128-4135 https://doi.org/10.1021/acsbiomaterials.0c01801
- Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V. Microfluidics-based 3D cell culture models: utility in novel drug discovery and delivery research. Bioeng Transl Med 2016;1:63-81 https://doi.org/10.1002/btm2.10013
- Jain A, Barrile R, van der Meer AD, et al. Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin Pharmacol Ther 2018;03:332-340 https://doi.org/10.1002/cpt.742
- Ding S, Zhang H, Wang X. Microfluidic-chip-integrated biosensors for lung disease models. Biosensors (Basel) 2021;1:456.
- Munta K, Gopal PB, Vigg A. Invasive aspergillosis in near drowning nonneutropenic patient. Indian J Crit Care Med 2015;19:739-742 https://doi.org/10.4103/0972-5229.171413
- Blank F, Rothen-Rutishauser B, Gehr P. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol 2007;36:669-677 https://doi.org/10.1165/rcmb.2006-0234OC
- Lenz AG, Karg E, Brendel E, et al. Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions. Biomed Res Int 2013;2013:652632
- Wu J, Wang Y, Liu G, Jia Y, Yang J, Shi J, et al. Characterization of air-liquid interface culture of A549 alveolar epithelial cells. Braz J Med Biol Res 2017;51:e6950
- Upadhyay S, Palmberg L. Air-liquid interface: relevant in vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol Sci 2018;164:21-30 https://doi.org/10.1093/toxsci/kfy053
- Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang TH, Abdullah F. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices 2009;11:1081-1089 https://doi.org/10.1007/s10544-009-9325-5
- Lamers MM, van der Vaart J, Knoops K, et al. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J 2021;40:105912
- Si L, Bai H, Rodas M, et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng 2021;5:815-829 https://doi.org/10.1038/s41551-021-00718-9
- Suezawa T, Kanagaki S, Moriguchi K, et al. Disease modeling of pulmonary fibrosis using human pluripotent stem cell-erived alveolar organoids. Stem Cell Reports 2021;16:973-2987 https://doi.org/10.1016/j.stemcr.2021.10.015
- Plebani R, Potla R, Soong M, et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros 2022;21:606-615 https://doi.org/10.1016/j.jcf.2021.10.004
- Kim M, Mun H, Sung CO, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun 2019;10:3991
- Shi R, Radulovich N, Ng C, et al. Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res 2020;26:1162-1174 https://doi.org/10.1158/1078-0432.CCR-19-1376
- Hu Y, Sui X, Song F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat Commun 2021;12:2581
- Park S, Kim TH, Kim SH, You S, Jung Y. Three-dimensional vascularized lung cancer-on-a-chip with lung extracellular matrix hydrogels for in vitro screening. Cancers (Basel) 2021;13:3930
- Gjorevski N, Lutolf MP. Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nat Protoc 2017;12:263-2274 https://doi.org/10.1038/nprot.2017.095
- Mammoto A, Mammoto T. Vascular niche in lung alveolar development, homeostasis, and regeneration. Front Bioeng Biotechnol 2019;7:318
- Sobrino A, Phan DT, Datta R, et al. 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 2016;6:31589
- van Engeland NCA, Pollet AMAO, den Toonder JMJ, Bouten CVC, Stassen OMJA, Sahlgren CM. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab Chip 2018;18:1607-1620 https://doi.org/10.1039/C8LC00286J
- Stewart RH. A modern view of the interstitial space in health and disease. Front Vet Sci 2020;7:609583
- Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020;92:424-432 https://doi.org/10.1002/jmv.25685
- Shrestha J, Razavi Bazaz S, Aboulkheyr Es H, et al. Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Crit Rev Biotechnol 2020;40:13-230 https://doi.org/10.1080/07388551.2019.1710458
- Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 1982;126:332-337
- Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H, Hogan BL. Lung organoids: current uses and future promise. Development 2017;144:986-997 https://doi.org/10.1242/dev.140103