• 제목/요약/키워드: Human joints

검색결과 295건 처리시간 0.031초

인체 관절 동작의 지각 불편도 Ranking

  • 기도형;신승헌;김형수
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1997년도 춘계학술대회논문집
    • /
    • pp.100-106
    • /
    • 1997
  • The purpose of this study is to measure perceived joint discomfort in the seated and standing position, and to provide a ranking system of joint discomfort measured in this study. Seven male subjects with no history of musculo-skeletal disorders participated in the experiment. Their physical characteristics were: age -$27.6 {\pm}1.8$ years, stature -$171.0 {\pm}5.5cm$, and body weight -$66.4{\pm}9.3kg$. The results showed that perceived joint discomfort was different depending on the human body joints involved in motion and their movement directions, which imply that the human body motions should be classified intoseveral distinct classes that need to be assigned different weights of postural stress. In the seated postion, the hip movement was the most stressful, the back was the second, and the shoulder was the third. Similarly, in standing postures, the hip was given the highest ranking, followed by the back, and the wrist.

  • PDF

센서 네트워크를 이용한 2족 보행 로봇의 워킹 방법에 관한 연구 (A study of Human robot Walking Method Using Zigbee Sensor Network)

  • 신대섭;이형철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.375-377
    • /
    • 2009
  • This paper researched the algorithm of robot's walking and action on the basis of robot studied and made at our laboratory and studied how to efficiently control the robot joints by developing wireless Digital Servo Motor using Zigbee Sensor Network Module which is using at wide part recently. I realized the stable walking by adopt Press Sensor at the bottom of robot foot to get stability of walking. Also I let the algorithm calculate the robot movement to make the joint motion and monitored the robot walk to its motion. At this Paper, I studied the method organizing the motion by the each robot walking and measuring the torque applying to the joint. And I also knew that it is possible to make its control and construct hardware more conveniently than them of the existing studied and controling 2Legs Walking Robot by applying it at walking robot and developing wireless servo motor by Zirbee Sensor Network.

  • PDF

욕창방지방석용 공기셀의 설계요소에 따른 체압 분포 특성 분석 (Analysis of Body Pressure Distribution Characteristics According to the Design Factors of the Air-Cell Mattress for Preventing Decubitus Ulcer)

  • 조현석;류제청;김규석;문무성;이인혁
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.118-126
    • /
    • 2007
  • A finite element simulation model was developed for the performance optimization of a closed type air-cell mattress used for the ulcer prevention. An H-model with material properties of human flesh and kinematic joints were used for the calculation of the body contact pressure. The material property of rubber air-cell was evaluated by tensile test of standard specimen. We evaluated the body contact pressure distribution after laying human model on the inflated air-cell mattress. It was found that the body contact pressure was dependent on cell height. but hardly affected by the thickness of the rubber in a cell.

역기구학을 이용한 보행분석

  • 최경임;정민근;염영일
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1994년도 춘계학술대회논문집
    • /
    • pp.136-144
    • /
    • 1994
  • In this study, the human gait trajectories during normal walking were synthesized using the inverse kinematics and optimization techniques. The synthesis based on a lower extremity model consisting of a torso and two legs. Each leg has three segments: thigh, shank, foot, and is assumed to move with six degrees-of-freedom. In order to synthesize trajectiories of this redundant system, the sum of angular displacements of articulating joints was selected as an objective function to be minimized. The proposed algorithm in this study is very useful for the analysis of human gait. For the gait analysis, the trajectories of four points in each leg should be measured. However, by using the algorithm, measuring the trajectories of two points is sufficient, and thus the experimental set-up can be simplified. The predicted joint trajectories showed a good agreement with those obtained from the experiment. The statistical analysis and graphic simula- tions are also presented.

  • PDF

Analysis of Human Arm Movement During Vehicle Steering Maneuver

  • Tak, Tae-Oh;Kim, Kun-Young;Chun, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.444-451
    • /
    • 2005
  • The analysis of human arm motion during steering maneuver is carried out for investigation of man-machine interface of driver and steering system Each arm is modeled as interconnection of upper arm, lower arm, and hand by rotational joints that can properly represents permissible joint motion, and both arms are connected to a steering wheel through spring and damper at the contact points. The joint motion law during steering motion is determined through the measurement of each arm movement, and subsequent inverse kinematic analysis. Combining the joint motion law and inverse dynamic analysis, joint stiffness of arm is estimated. Arm dynamic analysis model for steering maneuver is setup, and is validated through the comparison with experimentally measured data, which shows relatively good agreement. To demonstrate the usefulness of the arm model, it is applied to study the effect of steering column angle on the steering motion.

무릎관절의 3차원 회전량 측정을 위한 개선된 외골격 링크장치 형태의 측정기구 개발 (Development of a Modified Exoskeletal Linkage Type Instrument for 3-D Motion Measurement of the Human Knee Joint)

  • 김영은;안정호
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권3호
    • /
    • pp.289-294
    • /
    • 1994
  • A new type of electrogoniometer to measure the three dimensional motion of the human knee joint was developed. This instrument is composed of six potentiometers: four arranged for two universal joints, one for pin joint, and one for axial rotation measurement. The voltage change in six potentiometers were collected through A/D converter for acquisition, storage and analysis. With a developed instrument, gait analysis was performed. Compared to earlier developed triaxial type goniometer, new instrument shows its convenience in application and accuracy in measurement.

  • PDF

인간의 전완 회전을 위한 원위 요척골 관절의 기구학적 모델링 (Kinematic Modeling of Distal Radioulnar Joint for Human Forearm Rotation)

  • 윤덕찬;이건;최영진
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.251-257
    • /
    • 2019
  • This paper presents the kinematic modeling of the human forearm rotation constructed with a spatial four-bar linkage. Especially, a circumduction of the distal ulna is modeled for a minimal displacement of the position of the hand during the forearm rotation from the supination to the pronation. To establish its model, four joint types of the four-bar linkage are, firstly, assigned with the reasonable grounds, and then the spatial linkage having the URUU (Universal-Revolute-Universal-Universal) joint type is proposed. Kinematic analysis is conducted to show the behavior of the distal radio-ulna as well as to evaluate the angular displacements of all the joints. From the simulation result, it is, finally, revealed that the URUU spatial linkage can be substituted for the URUR (Universal-Revolute-Universal-Revolute) spatial linkage by a kinematic constraint.

인대 구조에서 기인한 전완 메커니즘과 자유도 해석 (Forearm Mechanism Inspired by Ligamentous Structure and Its Mobility Analysis)

  • 이건;이호
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.209-215
    • /
    • 2022
  • In this paper, a forearm Mechanism design inspired by ligamentous structure of the human body is proposed. The proposed mechanism consists of four rigid bodies and fourteen wires without any mechanical joints. Actually, the mechanism is based on the concept of the tensegrity structure. Therefore, the proposed mechanism has inherently compliant characteristics due to the flexibility of the wires composing the structure. Rigid bodies and wires of the mechanism mimic bones and major ligaments in the forearm of the human. The proposed mechanism is classified as one of the interconnected hybrid flexure systems. The analysis method of the degree of freedom (DOF) of the proposed mechanism is also introduced through analyzing technique of the interconnected hybrid flexure systems, in this paper. Ultimately, the proposed mechanism, whose structure is complicated with rigid bodies and wires, mathematically drives that it has 3-DOFs.

관절7호방이 Type II collagen으로 유발된 흰쥐의 관절염에 미치는 영향 (Suppressive Effect of GJB-7 on Collagen-Induced Arthritis in Mice)

  • 민부기;오민석
    • 대한한의학회지
    • /
    • 제31권4호
    • /
    • pp.63-78
    • /
    • 2010
  • Objectives: This study was carried out to know the effects of Gwan-Jul-Bang-7 (hereafter referred to GJB-7) on the inhibition of arthritis induced by collagen on the mouse. Methods: To assess the effects of GJB-7 on mouse with arthritis induced by collagen II, we conducted several experiments such as analysis of cytotoxicity, hepatotoxicity, arthritis index, total cell number of draining lymph nodes and paw joints, value of immunocyte in PBMC (peripheral blood mononuclear cell), DLN (draining lymph node) and paw joint, measurement of cytokine and anti-collagen II, observation of the histological changes of joint. Results: 1. Cytotoxicity against HFC (human fibroblast cells) was not observed in any concentration and hepatotoxicity was not observed in the GJB-7 treated group. 2. The incidence of arthritis significantly decreased. 3. Total cell number of draining lymph nodes significantly increased and total cell number of paw joints significantly decreased. 4. The percentage of $CD8^+$ cells in PBMC (peripheral blood mononuclear cell) significantly increased. The percentage of $CD3^+/CD69^+$, and $CD3^+/CD49b^+$ cells in PBMC significantly decreased. 5. The percentage of $CD19^+,\;CD3^+$, and $CD4^+/CD25^+$ cells in DLN (draining lymph nodes) significantly increased. The percentage of $B220^+/CD23^+$ cells in DLN significantly decreased. 6. The percentage of $CD3^+,\;CD4^+$, and $CD11b^+/Gr-1^+$ cells in paw joints significantly decreased. 7. The production of TNF-$\alpha$, IL-6, and MCP-1 significantly decreased. 8. Anti-collagen II in serum significantly decreased. 9. With the hematoxylin and eosin stain, inflammation of joint decreased. Under Masson's trichrome stain, the cartilage destruction and synovial cell proliferation and the expression of collagen fibers decreased. Conclusions: Comparison of the results for this study showed that GJB-7 had immunomodulatory effects. So we expect that GJB-7 could be used as an effective drug for not only rheumatoid arthritis but also another auto-immune diseases.

충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계 (Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation)

  • 김영민;김용태
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.