• Title/Summary/Keyword: Human intelligence

Search Result 1,168, Processing Time 0.025 seconds

A Design of Authentication Mechanism for Secure Communication in Smart Factory Environments (스마트 팩토리 환경에서 안전한 통신을 위한 인증 메커니즘 설계)

  • Joong-oh Park
    • Journal of Industrial Convergence
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2024
  • Smart factories represent production facilities where cutting-edge information and communication technologies are fused with manufacturing processes, reflecting rapid advancements and changes in the global manufacturing sector. They capitalize on the integration of robotics and automation, the Internet of Things (IoT), and the convergence of artificial intelligence technologies to maximize production efficiency in various manufacturing environments. However, the smart factory environment is prone to security threats and vulnerabilities due to various attack techniques. When security threats occur in smart factories, they can lead to financial losses, damage to corporate reputation, and even human casualties, necessitating an appropriate security response. Therefore, this paper proposes a security authentication mechanism for safe communication in the smart factory environment. The components of the proposed authentication mechanism include smart devices, an internal operation management system, an authentication system, and a cloud storage server. The smart device registration process, authentication procedure, and the detailed design of anomaly detection and update procedures were meticulously developed. And the safety of the proposed authentication mechanism was analyzed, and through performance analysis with existing authentication mechanisms, we confirmed an efficiency improvement of approximately 8%. Additionally, this paper presents directions for future research on lightweight protocols and security strategies for the application of the proposed technology, aiming to enhance security.

A Review of the Genesis Process and Competitiveness Determinants of Overseas Bio-Industrial Cluster: Case Studies of the BioHealth Capital Region in the US, Cambridge in the UK, and Medicon Valley in Denmark and Sweden (국외 바이오산업 클러스터의 태동 과정과 경쟁력 결정요인에 관한 고찰: 미국 바이오헬스캐피털리전, 영국 케임브리지, 덴마크-스웨덴 메디콘밸리 사례)

  • Bong-Kyung, Jeon
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.375-390
    • /
    • 2023
  • This study examined the genesis process and competitiveness determinants of overseas bio-industrial clusters. The bio industry is a promising new industry that major countries around the world are paying attention to because it can be applied to various industries and can create high added value by combining artificial intelligence and information and communication technology. In addition, the importance of clusters is emphasized in that it requires connection and cooperation with various stakeholders. However, compared to this importance and interest, related research in Korea is somewhat insufficient. In particular, overseas case studies are also overly biased toward a few leading clusters, and tend to produce policies and development plans that do not correspond to domestic local conditions. To alleviate this problem, this study looked at the birth and growth process of the BioHealth Capital Region in the United States, Cambridge Cluster in the United Kingdom, and Medicon Valley in Denmark and Sweden. Through this, we aim to enrich related case studies that were lacking, identify the determinants of competitiveness of each cluster, and present implications for the creation and development of domestic bio industry clusters.

A Study on Strategic Development Approaches for Cyber Seniors in the Information Security Industry

  • Seung Han Yoon;Ah Reum Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.73-82
    • /
    • 2024
  • In 2017, the United Nations reported that the population aged 60 and above was increasing more rapidly than all younger age groups worldwide, projecting that by 2050, the population aged 60 and above would constitute at least 25% of the global population, excluding Africa. The world is experiencing a decline in the rate of increase in the working-age population due to global aging, and the younger generation tends to avoid difficult and challenging occupations. Although theoretically, AI equipped with artificial intelligence can replace humans in all fields, in the realm of practical information security, human judgment and expertise are absolutely essential, especially in ethical considerations. Therefore, this paper proposes a method to retrain and reintegrate IT professionals aged 50 and above who are retiring or seeking career transitions, aiming to bring them back into the industry. For this research, surveys were conducted with 21 government/public agencies representing demand and 9 security monitoring companies representing supply. Survey results indicated that both demand (90%) and supply (78%) unanimously agreed on the absolute necessity of such measures. If the results of this research are applied in the field, it could lead to the strategic development of senior information security professionals, laying the foundation for a new market in the Korean information security industry amid the era of low birth rates and longevity.

Innovative Strategies for Korean Military Personnel Management in the Fourth Industrial Revolution Era: Focusing on AI Technology Adoption and Demographic Changes (4차 산업혁명 시대의 한국군 인력 운영 혁신 방안: AI 기술 도입과 인구구조 변화를 중심으로)

  • Ho-Shin Lee;Kyoung-Haing Lee;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.443-449
    • /
    • 2024
  • This study aims to analyze the complex impact of technological changes in the Fourth Industrial Revolution era and demographic shifts in Korea on military personnel management, and to explore innovative strategies for the Korean military's workforce operations. The research findings indicate that changes in future battlefield environments and the introduction of advanced technologies necessitate a fundamental restructuring of military personnel, emphasizing a shift towards a highly specialized and elite workforce. Key research findings are as follows: First, the military application of cutting-edge technologies, such as unmanned systems, autonomous weapon systems, and AI-based decision support systems, is expanding. Second, this technological advancement requires a restructuring of personnel to foster a technology-intensive elite force, including optimizing troop size, reorganizing unit structures, and increasing the utilization of civilian expertise. Third, strategies for securing high-tech talent include strengthening internal technology talent development programs, establishing systems to attract civilian experts, and building a talent development system through industry-academia-research cooperation. The significance of this study lies in providing a theoretical and practical foundation for building a future-oriented and efficient Korean military organization by presenting innovative measures for military human resource management systems suitable for the Fourth Industrial Revolution era. For these changes to be successfully implemented, cooperation among relevant stakeholders, including the military, government, academia, and industry, is essential, supported by comprehensive national-level planning and support.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

Quantitative Expression Analysis of Functional Genes in Four Dog Breeds (개의 네 품종에서 기능 유전자들에 대한 정량적 발현 분석)

  • Gim, Jeong-An;Kim, Sang-Hoon;Lee, Hee-Eun;Jeong, Hoim;Nam, Gyu-Hwi;Kim, Min Kyu;Huh, Jae-Won;Choi, Bong-Hwan;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.861-869
    • /
    • 2015
  • One of the domesticated species; the dog has been selectively bred for various aims by human. The dog has many breeds, which are artificially selected for specific behaviors and morphologies. Dogs contribute their life to human as working dogs for guide, rescue, detection or etc. Working dogs requires good personality, such as gentleness, robustness and patience for performing their special duty. Many studies have concentrated on finding genetic marker for selecting the high-quality working dog. In this study, we confirmed quantitative expression patterns of eight genes (ABAT; 4-Aminobutyrate Aminotransferase, PLCB1; Phospholipase C, Beta 1, SLC10A4; Solute Carrier Family 10, Member 4, WNT1; Wingless-Type MMTV Integration Site Family, Member 1, BARX2; BarH-Like Homeobox 2, NEUROD6; Neuronal Differentiation 6, SEPT9; Septin 9 and TBR1; T-Box, Brain, 1) among brains tissues from four dog breeds (Beagle, Sapsaree, Shepherd and Jindo), because these genes were expressed and have functions in brain mostly. Specially, BARX2, SEPT9, SLC10A4, TBR1 and WNT1 genes were highly expressed in Beagle and Jindo, and Sapsaree and German Shepherd were vice versa. The biological significance of total genes was estimated by database for annotation, visualization and integrated discovery (DAVID) to determine a different gene ontology (GO) class. In these analyses, we suppose to these eight genes could provide influential information for brain development, and intelligence of organisms. Taken together, these results could provide clues to discover biomarker related to functional traits in brain, and beneficial for selecting superior working dogs.

A Study on the Real Condition and the Improvement Directions for the Protection of Industrial Technology (산업기술 보호 관리실태 및 발전방안에 관한 연구)

  • Chung, Tae-Hwang;Chang, Hang-Bae
    • Korean Security Journal
    • /
    • no.24
    • /
    • pp.147-170
    • /
    • 2010
  • This study is to present a improvement directions for the protection of industrial key technology. For the purpose of the study, the survey was carried out on the administrative security activity of 68 enterprises including Large companies, small-midium companies and public corporations. survey result on the 10 items of security policy, 10 items of personal management and 7 items of the assets management are as follows; First, stable foundation for the efficient implement of security policy is needed. Carrying a security policy into practice and continuous upgrade should be fulfilled with drawing-up of the policy. Also for the vitalization of security activity, arrangement of security organization and security manager are needed with mutual assistance in the company. Periodic security inspection should be practiced for the improvement of security level and security understanding. Second, the increase of investment for security job is needed for security invigoration. Securing cooperation channel with professional security facility such as National Intelligence Service, Korea internet & security agency, Information security consulting company, security research institute is needed, also security outsourcing could be considered as the method of above investment. Especially small-midium company is very vulnerable compared with Large company and public corporation in security management, so increase of government's budget for security support system is necessary. Third, human resource management is important, because the main cause of leak of confidential information is person. Regular education rate for new employee and staff members is relatively high, but the vitalization of security oath for staff members and the third party who access to key technology is necessary. Also access right to key information should be changed whenever access right changes. Reinforcement of management of resigned person such as security oath, the elimination of access right to key information and the deletion of account. is needed. Forth, the control and management of important asset including patent and design should be tightened. Classification of importance of asset and periodic inspection are necessary with the effects evaluation of leak of asset.

  • PDF

A Collaborative Filtering System Combined with Users' Review Mining : Application to the Recommendation of Smartphone Apps (사용자 리뷰 마이닝을 결합한 협업 필터링 시스템: 스마트폰 앱 추천에의 응용)

  • Jeon, ByeoungKug;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.1-18
    • /
    • 2015
  • Collaborative filtering(CF) algorithm has been popularly used for recommender systems in both academic and practical applications. A general CF system compares users based on how similar they are, and creates recommendation results with the items favored by other people with similar tastes. Thus, it is very important for CF to measure the similarities between users because the recommendation quality depends on it. In most cases, users' explicit numeric ratings of items(i.e. quantitative information) have only been used to calculate the similarities between users in CF. However, several studies indicated that qualitative information such as user's reviews on the items may contribute to measure these similarities more accurately. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's reviews can be regarded as the informative source for identifying user's preference with accuracy. Under this background, this study proposes a new hybrid recommender system that combines with users' review mining. Our proposed system is based on conventional memory-based CF, but it is designed to use both user's numeric ratings and his/her text reviews on the items when calculating similarities between users. In specific, our system creates not only user-item rating matrix, but also user-item review term matrix. Then, it calculates rating similarity and review similarity from each matrix, and calculates the final user-to-user similarity based on these two similarities(i.e. rating and review similarities). As the methods for calculating review similarity between users, we proposed two alternatives - one is to use the frequency of the commonly used terms, and the other one is to use the sum of the importance weights of the commonly used terms in users' review. In the case of the importance weights of terms, we proposed the use of average TF-IDF(Term Frequency - Inverse Document Frequency) weights. To validate the applicability of the proposed system, we applied it to the implementation of a recommender system for smartphone applications (hereafter, app). At present, over a million apps are offered in each app stores operated by Google and Apple. Due to this information overload, users have difficulty in selecting proper apps that they really want. Furthermore, app store operators like Google and Apple have cumulated huge amount of users' reviews on apps until now. Thus, we chose smartphone app stores as the application domain of our system. In order to collect the experimental data set, we built and operated a Web-based data collection system for about two weeks. As a result, we could obtain 1,246 valid responses(ratings and reviews) from 78 users. The experimental system was implemented using Microsoft Visual Basic for Applications(VBA) and SAS Text Miner. And, to avoid distortion due to human intervention, we did not adopt any refining works by human during the user's review mining process. To examine the effectiveness of the proposed system, we compared its performance to the performance of conventional CF system. The performances of recommender systems were evaluated by using average MAE(mean absolute error). The experimental results showed that our proposed system(MAE = 0.7867 ~ 0.7881) slightly outperformed a conventional CF system(MAE = 0.7939). Also, they showed that the calculation of review similarity between users based on the TF-IDF weights(MAE = 0.7867) leaded to better recommendation accuracy than the calculation based on the frequency of the commonly used terms in reviews(MAE = 0.7881). The results from paired samples t-test presented that our proposed system with review similarity calculation using the frequency of the commonly used terms outperformed conventional CF system with 10% statistical significance level. Our study sheds a light on the application of users' review information for facilitating electronic commerce by recommending proper items to users.

Characterizing Strategy of Emotional sympathetic Robots in Animation and Movie - Focused on Appearance and Behavior tendency Analysis - (애니메이션 및 영화에 등장하는 정서교감형 로봇의 캐릭터라이징 전략 - 외형과 행동 경향성 분석을 중심으로 -)

  • Ryu, Beom-Yeol;Yang, Se-Hyeok
    • Cartoon and Animation Studies
    • /
    • s.48
    • /
    • pp.85-116
    • /
    • 2017
  • The purpose of this study is to analyze conditions that robots depicted in cinematographic works like animations or movies sympathize with and form an attachment with the nuclear person and organize characterizing strategies for emotional sympathetic robots. Along with the development of technology, the areas of artificial intelligence and robots are no longer considered to belong to science fiction but as realistic issues. Therefore, this author assumes that the expressive characteristics of emotional sympathetic robots created by cinematographic works should be used as meaningful factors in expressively embodying human-friendly service robots to be distributed widely afterwards, that is, in establishing the features of characters. To lay the grounds for it, this research has begun. As the subjects of analysis, this researcher has chosen robot characters whose emotional intimacy with the main person is clearly observed among those found in movies and animations produced after the 1920 when robot's contemporary concept was declared. Also, to understand robots' appearance and behavioral tendency, this study (1) has classified robots' external impressions into five types (human-like, cartoon, tool-like, artificial bring, pet or creature) and (2) has classified behavioral tendencies considered to be the outer embodiment of personality by using DiSC, the tool to diagnose behavioral patterns. Meanwhile, it has been observed that robots equipped with high emotional intimacy are all strongly independent about their duties and indicate great emotional acceptance. Therefore, 'influence' and 'Steadiness' types show great emotional acceptance, the influencing type tends to be highly independent, and the 'Conscientiousness' type tends to indicate less emotional acceptance and independency in general. Yet, according to the analysis on external impressions, appearance factors hardly have any significant relationship with emotional sympathy. It implies that regarding the conditions of robots equipped with great emotional sympathy, emotional sympathy grounded on communication exerts more crucial effects than first impression similarly to the process of forming interpersonal relationship in reality. Lastly, to study the characters of robots, it is absolutely needed to have consilient competence embracing different areas widely. This author also has felt that only with design factors or personality factors, it is hard to estimate robot characters and also analyze a vast amount of information demanded in sympathy with humans entirely. However, this researcher will end this thesis as the foundation for it expecting that the general artistic value of animations can be used preciously afterwards in developing robots that have to be studied interdisciplinarily.

The Trend of Aviation Terrorism in the 4th Industrial Revolution Period and the Development Direction for Domestic Counter Terrorism of Aviation (제4차 산업혁명 시대의 항공 테러리즘 양상 및 국내 항공테러 대응체계 발전방향)

  • Hwang, Ho-Won;Kim, Seung-Woo
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.2
    • /
    • pp.155-188
    • /
    • 2017
  • On the one hand, the 4th Industrial Revolution provides a positive opportunity to build a new civilization paradigm for mankind. However, on the other hand, due to the 4th Industrial Revolution, artificial intelligence such as 'Goggle Alpha Go' revolutionized and even the human ability was replaced with a 'Silicon Chip' as the opportunity to communicate decreases, the existence of human beings is weakened. And there is a growing concern that the number of violent crimes, such as psychopath, which hunts humans as games, will increase. Moreover, recent international terrorism is being developed in a form similar to 'Psychopathic Violent-Crime' that indiscriminately attacks innocent people. So, the probability that terrorist organizations abuse the positive effects provided by the Fourth Industrial Revolution as means of terrorism is increasing. Therefore, the paradigm of aviation terrorism is expected to change in a way that attacks airport facilities and users rather than aircraft. Because airport facilities are crowded, and psychopathic terrorists are easily accessible. From this point of view, our counter terrorism system of aviation has many weak points in various aspects such as: (1) limitations of counter-terrorism center (2) inefficient on-site command and control system (3) separated organization for aviation security consultation (4) dispersed information collection function in government (5) vulnerable to cyber attack (6) lack of international cooperation network for aviation terrorism. Consequently, it is necessary to improve the domestic counter terrorism system of aviation so as to preemptively respond to the international terrorism. This study propose the following measures to improve the aviation security system by (1) create 'Aviation Special Judicial Police' (2) revise the anti-terrorism law and aviation security law (3) Strengthening the ability respond to terrorism in cyberspace (4) building an international cooperation network for aviation terrorism.

  • PDF