• Title/Summary/Keyword: Human failure event (HFE)

Search Result 3, Processing Time 0.018 seconds

How to incorporate human failure event recovery into minimal cut set generation stage for efficient probabilistic safety assessments of nuclear power plants

  • Jung, Woo Sik;Park, Seong Kyu;Weglian, John E.;Riley, Jeff
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.110-116
    • /
    • 2022
  • Human failure event (HFE) dependency analysis is a part of human reliability analysis (HRA). For efficient HFE dependency analysis, a maximum number of minimal cut sets (MCSs) that have HFE combinations are generated from the fault trees for the probabilistic safety assessment (PSA) of nuclear power plants (NPPs). After collecting potential HFE combinations, dependency levels of subsequent HFEs on the preceding HFEs in each MCS are analyzed and assigned as conditional probabilities. Then, HFE recovery is performed to reflect these conditional probabilities in MCSs by modifying MCSs. Inappropriate HFE dependency analysis and HFE recovery might lead to an inaccurate core damage frequency (CDF). Using the above process, HFE recovery is performed on MCSs that are generated with a non-zero truncation limit, where many MCSs that have HFE combinations are truncated. As a result, the resultant CDF might be underestimated. In this paper, a new method is suggested to incorporate HFE recovery into the MCS generation stage. Compared to the current approach with a separate HFE recovery after MCS generation, this new method can (1) reduce the total time and burden for MCS generation and HFE recovery, (2) prevent the truncation of MCSs that have dependent HFEs, and (3) avoid CDF underestimation. This new method is a simple but very effective means of performing MCS generation and HFE recovery simultaneously and improving CDF accuracy. The effectiveness and strength of the new method are clearly demonstrated and discussed with fault trees and HFE combinations that have joint probabilities.

Direct fault-tree modeling of human failure event dependency in probabilistic safety assessment

  • Ji Suk Kim;Sang Hoon Han;Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.119-130
    • /
    • 2023
  • Among the various elements of probabilistic safety assessment (PSA), human failure events (HFEs) and their dependencies are major contributors to the quantification of risk of a nuclear power plant. Currently, the dependency among HFEs is reflected using a post-processing method in PSA, wherein several drawbacks, such as limited propagation of minimal cutsets through the fault tree and improper truncation of minimal cutsets exist. In this paper, we propose a method to model the HFE dependency directly in a fault tree using the if-then-else logic. The proposed method proved to be equivalent to the conventional post-processing method while addressing the drawbacks of the latter. We also developed a software tool to facilitate the implementation of the proposed method considering the need for modeling the dependency between multiple HFEs. We applied the proposed method to a specific case to demonstrate the drawbacks of the conventional post-processing method and the advantages of the proposed method. When applied appropriately under specific conditions, the direct fault-tree modeling of HFE dependency enhances the accuracy of the risk quantification and facilitates the analysis of minimal cutsets.

Development of a Fire Human Reliability Analysis Procedure for Full Power Operation of the Korean Nuclear Power Plants (국내 전출력 원전 적용 화재 인간신뢰도분석 절차 개발)

  • Choi, Sun Yeong;Kang, Dae Il
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.87-96
    • /
    • 2020
  • The purpose of this paper is to develop a fire HRA (Human Reliability Analysis) procedure for full power operation of domestic NPPs (Nuclear Power Plants). For the development of fire HRA procedure, the recent research results of NUREG-1921 in an effort to meet the requirements of the ASME/ANS PRA Standard were reviewed. The K-HRA method, a standard method for HRA of a domestic level 1 PSA (Probabilistic Safety Assessment) and fire related procedures in domestic NPPs were reviewed. Based on the review, a procedure for the fire HRA required for a domestic fire PSA based on the K-HRA method was developed. To this end, HRA issues such as new operator actions required in the event of a fire and complexity of fire situations were considered. Based on the four kinds of HFE (Human Failure Event) developed for a fire HRA in this research, a qualitative analysis such as feasibility evaluation was suggested. And also a quantitative analysis process which consists of screening analysis and detailed analysis was proposed. For the qualitative analysis, a screening analysis by NUREG-1921 was used. In this research, the screening criteria for the screening analysis was modified to reduce vague description and to reflect recent experimental results. For a detailed analysis, the K-HRA method and scoping analysis by NUREG-1921 were adopted. To apply K-HRA to fire HRA for quantification, efforts to modify PSFs (Performance Shaping Factors) of K-HRA to reflect fire situation and effects were made. For example, an absence of STA (Shift Technical Advisor) to command a fire brigade at a fire area is considered and the absence time should be reflected for a HEP (Human Error Probability) quantification. Based on the fire HRA procedure developed in this paper, a case study for HEP quantification such as a screening analysis and detailed analysis with the modified K-HRA was performed. It is expected that the HRA procedure suggested in this paper will be utilized for fire PSA for domestic NPPs as it is the first attempt to establish an HRA process considering fire effects.