• Title/Summary/Keyword: Human embryonic stem cells

Search Result 231, Processing Time 0.025 seconds

The role of autophagy in cell proliferation and differentiation during tooth development

  • Ji-Yeon Jung;Shintae Kim;Yeon-Woo Jeong;Won-Jae Kim
    • International Journal of Oral Biology
    • /
    • v.48 no.4
    • /
    • pp.33-44
    • /
    • 2023
  • In this review, the regulatory mechanisms of autophagy were described, and its interaction with apoptosis was identified. The role of autophagy in embryogenesis, tooth development, and cell differentiation were also investigated. Autophagy is regulated by various autophagy-related genes and those related to stress response. Highly active autophagy occurrences have been reported during cell differentiation before implantation after fertilization. Autophagy is involved in energy generation and supplies nutrients during early birth, essential to compensate for their deficient supply from the placenta. The contribution of autophagy during tooth development, such as the shape of the crown and root formation, ivory, and homeostasis in cells, was also observed. Genes control autophagy, and studying the role of autophagy in cell differentiation and development was useful for understanding human aging, illness, and health. In the future, the role of specific mechanisms in the development and differentiation of autophagy may increase the understanding of the pathological mechanisms of disease and development processes and is expected to reduce the treatment of various diseases by modulating the autophagic phenomenon.

The Question of Abnormalities in Mouse Clones and ntES Cells

  • Wakayama, Teruhiko
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.7-8
    • /
    • 2003
  • Since it was first reported in 1997, somatic cell cloning has been demonstrated in several other mammalian species. On the mouse, it can be cloned from embryonic stem (ES) cells, fetus-derived cells, and adult-derived cells, both male and female. While cloning efficiencies range from 0 to 20%, rates of just 1-2% are typical (i.e. one or two live offspring per one hundred initial embryos). Recently, abnormalities in mice cloned from somatic cells have been reported, such as abnormal gene expression in embryo (Boiani et al., 2001, Bortvin et al., 2003), abnormal placenta (Wakayama and Yanagimachi 1999), obesity (Tamashiro et ai, 2000, 2002) or early death (Ogonuki et al., 2002). Such abnormalities notwithstanding, success in generating cloned offspring has opened new avenues of investigation and provides a valuable tool that basic research scientists have employed to study complex processes such as genomic reprogramming, imprinting and embryonic development. On the other hand, mouse ES cell lines can also be generated from adult somatic cells via nuclear transfer. These 'ntES cells' are capable of differentiation into an extensive variety of cell types in vitro, as well assperm and oocytes in vivo. Interestingly, the establish rate of ntES cell line from cloned blastocyst is much higher than the success rate of cloned mouse. It is also possible to make cloned mice from ntES cell nuclei as donor, but this serial nuclear transfer method could not improved the cloning efficiency. Might be ntES cell has both character between ES cell and somatic cell. A number of potential agricultural and clinical applications are also are being explored, including the reproductive cloning of farm animals and therapeutic cloning for human cell, tissue, and organ replacement. This talk seeks to describe both the relationship between nucleus donor cell type and cloning success rate, and methods for establishing ntES cell lines. (중략)

  • PDF

In Vitro Differentiation-induced hES Cells Relieve Symptomatic Motor Behavior of PD Animal Model

  • 이창현;김은경;이영재;주완석;조현정;길광수;이금실;신현아;안소연
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.95-95
    • /
    • 2002
  • Human embryonic stem (hES) cells can be induced to differentiate into tyrosine hydroxylase expressing (TH+) cells that may serve as an alternative for cell replacement therapy for Parkinson's disease (PD). To examine in vitro differentiation of hES (MB03, registered in NIH) cells into TH+ cells, hES cells were induced to differentiate according to the 4-/4+ protocol using retinoic acid (RA), ascorbic acid (AA), and/or lithium chloride (LiCl) followed by culture in N2 medium for 14 days, during which time the differentiation occurs. Immunocytochemical stainings of the cells revealed that approximately 21.1% of cells treated with RA plus AA expressed TH protein that is higher than the ratio of TH+ cells seen in any other treatment groups (RA, RA+LiCl or RA+AA+LiCl). In order to see the differentiation pattern in vivo and the ability of in vitro differentiation-induced cells in easing symptomatic motor function of PD animal model, cells (2 $\times$ 10$^{5}$ cells/2${mu}ell$) undergone 4-/4+ protocol using RA plus AA without any further treatment were transplanted into unilateral striatum of MPTP-lesioned PD animal model (C57BL/6). Following the surgery, motor behavior of the animals was examined by measuring the retention time on an accelerating rotar-rod far next 10 weeks. No significant differences in retention time of the animals were noticed until 2 weeks post-graft; however, it increased markedly at 6 weeks and 10 weeks time point after the surgery. Immunohistochemical studies confirmed that a reasonable number of TH+ cells were found at the graft site as well as other remote sites, showing the migrating nature of embryonic stem cells. These results suggest that in viかo differentiated hES cells relieve symptomatic motor behavior of PD animal model and should be considered as a promising alternative for the treatment of PD.

  • PDF

Ell3 Modulates the Wound Healing Activity of Conditioned Medium of Adipose-derived Stem Cells

  • Lee, Jae-Yong;Oh, Nuri;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.21 no.3
    • /
    • pp.335-342
    • /
    • 2017
  • While adipose-derived stem cell-conditioned medium (ADSC-CM) has been demonstrated to promote skin wound healing, the mechanism regulating this effect remains unelucidated. In this study, we aimed to investigate the role of Ell3 in the wound healing activity of ADSC-CM. In vitro analysis revealed that Ell3 suppression in ADSCs impairs the promotive activity of ADSC-CM on the proliferation and migration of mouse embryonic fibroblasts (MEF) and normal human dermal fibroblasts (NHDF). Consistently, the expression of MMP family genes, which regulate cell proliferation and migration, was significantly suppressed in MEF and NHDF treated with siEll3-transfected ADSC-CM. Proinflammatory cytokines, such as interleukin-1 and interleukin-6, were highly expressed in MEF treated with siEll3-transfected ADSC-CM. The wound healing activity of siEll3-transfected ADSC-CM was significantly lower than that of the control in vivo. Our results suggest that Ell3 may contribute to the inhibition of inflammatory response during skin wound healing.

Efficient Culture Method for Early Passage hESCs after Thawing (초기 계대 인간 배아줄기세포의 해동 후 효율적인 배양 방법)

  • Baek, Jin-Ah;Kim, Hee-Sun;Seol, Hye-Won;Seo, Jin;Jung, Ju-Won;Yoon, Bo-Ae;Park, Yong-Bin;Oh, Sun-Kyung;Ku, Seung-Yup;Kim, Seok-Hyun;Choi, Young-Min;Moon, Shin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.4
    • /
    • pp.311-319
    • /
    • 2009
  • Objective: Human embryonic stem cells (hESCs) have the capacity to differentiate into all of the cell types and therefore hold promise for cell therapeutic applications. In order to utilize this important potential of hESCs, enhancement of currently used technologies for handling and manipulating the cells is required. The cryopreservation of hESC colonies was successfully performed using the vitrification and slow freezing-rapid thawing method. However, most of the hESC colonies were showed extremely spontaneous differentiation after freezing and thawing. In this study, we were performed to rapidly collect of early passage hESCs, which was thawed and had high rate of spontaneously differentiation of SNUhES11 cell line. Methods: Four days after plating, partially spontaneously differentiated parts of hESC colony were cut off using finely drawn-out dissecting pipette, which is mechanical separation method. Results: After separating of spontaneously differentiated cells, we observed that removed parts were recovered by undifferentiated cells. Furthermore, mechanical separation method was more efficient for hESCs expansion after thawing when we repeated this method. The recovery rate after removing differentiated parts of hESC colonies were 55.0%, 74.5%, and 71.1% when we have applied this method to three passages. Conclusion: Mechanical separation method is highly effective for rapidly collecting and large volumes of undifferentiated cells after thawing of cryopreserved early passage hESCs.

Characterization of Primary Epithelial Cells Derived from Human Salivary Gland Contributing to in vivo Formation of Acini-like Structures

  • Nam, Hyun;Kim, Ji-Hye;Hwang, Ji-Yoon;Kim, Gee-Hye;Kim, Jae-Won;Jang, Mi;Lee, Jong-Ho;Park, Kyungpyo;Lee, Gene
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.515-522
    • /
    • 2018
  • Patients with head and neck cancer are treated with therapeutic irradiation, which can result in irreversible salivary gland dysfunction. Because there is no complete cure for such patients, stem cell therapy is an emerging alternative for functional restoration of salivary glands. In this study, we investigated in vitro characteristics of primarily isolated epithelial cells from human salivary gland (Epi-SGs) and in vivo formation of acini-like structures by Epi-SGs. Primarily isolated Epi-SGs showed typical epithelial cell-like morphology and expressed E-cadherin but not N-cadherin. Epi-SGs expressed epithelial stem cell (EpiSC) and embryonic stem cell (ESC) markers. During long-term culture, the expression of EpiSC and ESC markers was highly detected and maintained within the core population with small size and low cytoplasmic complexity. The core population expressed cytokeratin 7 and cytokeratin 14, known as duct markers indicating that Epi-SGs might be originated from the duct. When Epi-SGs were transplanted in vivo with Matrigel, acini-like structures were readily formed at 4 days after transplantation and they were maintained at 7 days after transplantation. Taken together, our data suggested that Epi-SGs might contain stem cells which were positive for EpiSC and ESC markers, and Epi-SGs might contribute to the regeneration of acini-like structures in vivo. We expect that Epi-SGs will be useful source for the functional restoration of damaged salivary gland.

miR-372 Regulates Cell Cycle and Apoptosis of AGS Human Gastric Cancer Cell Line through Direct Regulation of LATS2

  • Cho, Wha Ja;Shin, Jeong Min;Kim, Jong Soo;Lee, Man Ryul;Hong, Ki Sung;Lee, Jun-Ho;Koo, Kyoung Hwa;Park, Jeong Woo;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.521-527
    • /
    • 2009
  • Previously, we have reported tissue- and stage-specific expression of miR-372 in human embryonic stem cells and so far, not many reports speculate the function of this microRNA (miRNA). In this study, we screened various human cancer cell lines including gastric cancer cell lines and found first time that miR-372 is expressed only in AGS human gastric adenocarcinoma cell line. Inhibition of miR-372 using antisense miR-372 oligonucleotide (AS-miR-372) suppressed proliferation, arrested the cell cycle at G2/M phase, and increased apoptosis of AGS cells. Furthermore, AS-miR-372 treatment increased expression of LATS2, while over-expression of miR-372 decreased luciferase reporter activity driven by the 3' untranslated region (3' UTR) of LATS2 mRNA. Over-expression of LATS2 induced changes in AGS cells similar to those in AGS cells treated with AS-miR-372. Taken together, these findings demonstrate an oncogenic role for miR-372 in controlling cell growth, cell cycle, and apoptosis through down-regulation of a tumor suppressor gene, LATS2.