DOI QR코드

DOI QR Code

miR-372 Regulates Cell Cycle and Apoptosis of AGS Human Gastric Cancer Cell Line through Direct Regulation of LATS2

  • Cho, Wha Ja (Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Shin, Jeong Min (Department of Anatomy and Cell Biology, Hanyang University, College of Medicine) ;
  • Kim, Jong Soo (Department of Anatomy and Cell Biology, Hanyang University, College of Medicine) ;
  • Lee, Man Ryul (Department of Anatomy and Cell Biology, Hanyang University, College of Medicine) ;
  • Hong, Ki Sung (Department of Anatomy and Cell Biology, Hanyang University, College of Medicine) ;
  • Lee, Jun-Ho (Department of Anatomy and Cell Biology, Hanyang University, College of Medicine) ;
  • Koo, Kyoung Hwa (Department of Anatomy and Cell Biology, Hanyang University, College of Medicine) ;
  • Park, Jeong Woo (Department of Biological Sciences, University of Ulsan) ;
  • Kim, Kye-Seong (Department of Anatomy and Cell Biology, Hanyang University, College of Medicine)
  • Received : 2009.05.21
  • Accepted : 2009.09.22
  • Published : 2009.12.31

Abstract

Previously, we have reported tissue- and stage-specific expression of miR-372 in human embryonic stem cells and so far, not many reports speculate the function of this microRNA (miRNA). In this study, we screened various human cancer cell lines including gastric cancer cell lines and found first time that miR-372 is expressed only in AGS human gastric adenocarcinoma cell line. Inhibition of miR-372 using antisense miR-372 oligonucleotide (AS-miR-372) suppressed proliferation, arrested the cell cycle at G2/M phase, and increased apoptosis of AGS cells. Furthermore, AS-miR-372 treatment increased expression of LATS2, while over-expression of miR-372 decreased luciferase reporter activity driven by the 3' untranslated region (3' UTR) of LATS2 mRNA. Over-expression of LATS2 induced changes in AGS cells similar to those in AGS cells treated with AS-miR-372. Taken together, these findings demonstrate an oncogenic role for miR-372 in controlling cell growth, cell cycle, and apoptosis through down-regulation of a tumor suppressor gene, LATS2.

Keywords

Acknowledgement

Supported by : Ministry of Health and Welfare, Korea Research Foundation, Stem Cell Research Center

References

  1. Bartek, J., and Lukas, J. (2006). Cell biology. Balancing life-or-death decisions. Science 314, 261-262 https://doi.org/10.1126/science.1133758
  2. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 https://doi.org/10.1016/S0092-8674(04)00045-5
  3. Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766-770 https://doi.org/10.1038/ng1590
  4. Card, D.A., Hebbar, P.B., Li, L., Trotter, K.W., Komatsu, Y., Mishina, Y., and Archer, T.K. (2008). Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol. Cell. Biol. 28, 6426-6438 https://doi.org/10.1128/MCB.00359-08
  5. Carleton, M., Cleary, M.A., and Linsley, P.S. (2007). MicroRNAs and cell cycle regulation. Cell Cycle 6, 2127-2132 https://doi.org/10.4161/cc.6.17.4641
  6. Cho, W.C. (2007). OncomiRs: the discovery and progress of microRNAs in cancers. Mol. Cancer 6, 60 https://doi.org/10.1186/1476-4598-6-60
  7. Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944-13949 https://doi.org/10.1073/pnas.0506654102
  8. Doree, M., and Galas, S. (1994). The cyclin-dependent protein kinases and the control of cell division. FASEB J. 8, 1114-1121 https://doi.org/10.1096/fasebj.8.14.7958616
  9. Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe, Y., Kawahara, K., Sekido, Y., and Takahashi, T. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628-9632 https://doi.org/10.1158/0008-5472.CAN-05-2352
  10. He, L., and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522-531 https://doi.org/10.1038/nrg1379
  11. He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S.W., Hannon, G.J., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435, 828-833 https://doi.org/10.1038/nature03552
  12. Kamikubo, Y., Takaori-Kondo, A., Uchiyama, T., and Hori, T. (2003). Inhibition of cell growth by conditional expression of kpm, a human homologue of Drosophila warts/lats tumor suppressor. J. Biol. Chem. 278, 17609-17614 https://doi.org/10.1074/jbc.M211974200
  13. Ke, H., Pei, J., Ni, Z., Xia, H., Qi, H., Woods, T., Kelekar, A., and Tao, W. (2004). Putative tumor suppressor Lats2 induces apoptosis through downregulation of Bcl-2 and Bcl-x(L). Exp. Cell Res. 298, 329-338 https://doi.org/10.1016/j.yexcr.2004.04.031
  14. Kim, K.S., Kim, J.S., Lee, M.R., Jeong, H.S., and Kim, J. (2009). A study of microRNAs in silico and in vivo: emerging regulators of embryonic stem cells. FEBS J. 276, 2410-2149
  15. Lee, R.C., and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862-864 https://doi.org/10.1126/science.1065329
  16. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 https://doi.org/10.1016/0092-8674(93)90529-Y
  17. Lee, N.S., Kim, J.S., Cho, W.J., Lee, M.R., Steiner, R., Gompers, A., Ling, D., Zhang, J., Strom, P., Behlke, M., et al. (2008). miR- 302b maintains 'stemness' of human embryonal carcinoma cells by post-transcriptional regulation of Cyclin D2 expression. Biochem. Biophys. Res. Commun. 377, 434-440 https://doi.org/10.1016/j.bbrc.2008.09.159
  18. Lee, K.H., Goan, Y.G., Hsiao, M., Lee, C.H., Jian, S.H., Lin, J.T., Chen, Y.L., and Lu, P.J. (2009). MicroRNA-373 (miR-373) posttranscriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp. Cell Res. 315, 2529-2538 https://doi.org/10.1016/j.yexcr.2009.06.001
  19. Leung, W.K., Wu, M.S., Kakugawa, Y., Kim, J.J., Yeoh, K.G., Goh, K.L., Wu, K.C., Wu, D.C., Sollano, J., Kachintorn, U., et al. (2008). Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol. 9, 279-287 https://doi.org/10.1016/S1470-2045(08)70072-X
  20. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787-798 https://doi.org/10.1016/S0092-8674(03)01018-3
  21. Li, Y., Pei, J., Xia, H., Ke, H., Wang, H., and Tao, W. (2003). Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene 22, 4398-4405 https://doi.org/10.1038/sj.onc.1206603
  22. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834-838 https://doi.org/10.1038/nature03702
  23. Matsui, Y., Nakano, N., Shao, D., Gao, S., Luo, W., Hong, C., Zhai, P., Holle, E., Yu, X., Yabuta, N., et al. (2008). Lats2 is a negative regulator of myocyte size in the heart. Circ. Res. 103, 1309- 1318 https://doi.org/10.1161/CIRCRESAHA.108.180042
  24. Mertens-Talcott, S.U., Chintharlapalli, S., Li, X., and Safe, S. (2007). The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 67, 11001- 11011 https://doi.org/10.1158/0008-5472.CAN-07-2416
  25. O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839-843 https://doi.org/10.1038/nature03677
  26. Saito, Y., Suzuki, H., and Hibi, T. (2009). The role of microRNAs in gastrointestinal cancers. J. Gastroenterol. 44 (Suppl 19), 18-22 https://doi.org/10.1007/s00535-008-2285-3
  27. Suh, M.R., Lee, Y., Kim, J.Y., Kim, S.K., Moon, S.H., Lee, J.Y., Cha, K.Y., Chung, H.M., Yoon, H.S., Moon, S.Y., et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270, 488-498 https://doi.org/10.1016/j.ydbio.2004.02.019
  28. Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., Harano, T., Yatabe, Y., Nagino, M., Nimura, Y., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753-3756 https://doi.org/10.1158/0008-5472.CAN-04-0637
  29. Volinia, S., Calin, G.A., Liu, C.G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 103, 2257-2261 https://doi.org/10.1073/pnas.0510565103
  30. Voorhoeve, P.M., le Sage, C., Schrier, M., Gillis, A.J., Stoop, H., Nagel, R., Liu, Y.P., van Duijse, J., Drost, J., Griekspoor, A., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169-1181 https://doi.org/10.1016/j.cell.2006.02.037
  31. Wu, W., Sun, M., Zou, G.M., and Chen, J. (2007). MicroRNA and cancer: Current status and prospective. Int. J. Cancer 120, 953- 960 https://doi.org/10.1002/ijc.22454
  32. Yabuta, N., Fujii, T., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Nishiguchi, H., Endo, Y., Toji, S., Tanaka, H., Nishimune, Y., et al. (2000). Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Genomics 63, 263-270 https://doi.org/10.1006/geno.1999.6065
  33. Zamore, P.D., and Haley, B. (2005). Ribo-gnome: the big world of small RNAs. Science 309, 1519-1524 https://doi.org/10.1126/science.1111444

Cited by

  1. hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing vol.120, pp.8, 2010, https://doi.org/10.1172/jci42275
  2. Targeting YAP and Hippo signaling pathway in liver cancer vol.14, pp.8, 2009, https://doi.org/10.1517/14728222.2010.499361
  3. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version vol.24, pp.9, 2009, https://doi.org/10.1101/gad.1909210
  4. Stability of the LATS2 Tumor Suppressor Gene Is Regulated by Tristetraprolin vol.285, pp.23, 2010, https://doi.org/10.1074/jbc.m109.094235
  5. MicroRNA expression and its implication for the diagnosis and therapeutic strategies of gastric cancer vol.297, pp.2, 2009, https://doi.org/10.1016/j.canlet.2010.07.018
  6. Targeting miR-375 in gastric cancer vol.15, pp.8, 2009, https://doi.org/10.1517/14728222.2011.581232
  7. The Role of microRNAs in Helicobacter pylori Pathogenesis and Gastric Carcinogenesis vol.1, pp.None, 2009, https://doi.org/10.3389/fcimb.2011.00021
  8. MicroRNAs Regulate Key Effector Pathways of Senescence vol.2011, pp.None, 2011, https://doi.org/10.4061/2011/205378
  9. miR-Sens-a retroviral dual-luciferase reporter to detect microRNA activity in primary cells vol.18, pp.5, 2009, https://doi.org/10.1261/rna.031831.111
  10. An update on targeting Hippo-YAP signaling in liver cancer vol.16, pp.3, 2009, https://doi.org/10.1517/14728222.2012.662958
  11. Titrated extract of Centella asiatica provides a UVB protective effect by altering microRNA expression profiles in human dermal fibroblasts vol.30, pp.5, 2009, https://doi.org/10.3892/ijmm.2012.1117
  12. Centella asiatica protects against UVB-induced HaCaT keratinocyte damage through microRNA expression changes vol.30, pp.6, 2009, https://doi.org/10.3892/ijmm.2012.1157
  13. Hippo signaling pathway in mammals:a new therapeutic target for tumors : Hippo signaling pathway in mammals:a new therapeutic target for tumors vol.34, pp.3, 2012, https://doi.org/10.3724/sp.j.1005.2012.00269
  14. MicroRNAs as Diagnostic Biomarkers in Gastric Cancer vol.13, pp.10, 2009, https://doi.org/10.3390/ijms131012544
  15. Regulators of mammalian Hippo pathway in cancer vol.1826, pp.2, 2009, https://doi.org/10.1016/j.bbcan.2012.05.006
  16. Involvement of parental imprinting in the antisense regulation of onco-miR-372-373 vol.4, pp.1, 2013, https://doi.org/10.1038/ncomms3724
  17. Correlation of microrna-372 upregulation with poor prognosis in human glioma vol.8, pp.1, 2009, https://doi.org/10.1186/1746-1596-8-1
  18. microRNA-372 maintains oncogene characteristics by targeting TNFAIP1 and affects NFκB signaling in human gastric carcinoma cells vol.42, pp.2, 2013, https://doi.org/10.3892/ijo.2012.1737
  19. MicroRNA-373 is upregulated and targets TNFAIP1 in human gastric cancer, contributing to tumorigenesis vol.6, pp.5, 2013, https://doi.org/10.3892/ol.2013.1534
  20. Caudatin induces cell apoptosis in gastric cancer cells through modulation of Wnt/β-catenin signaling vol.30, pp.2, 2009, https://doi.org/10.3892/or.2013.2495
  21. Pregnancy-associated miRNA-clusters vol.97, pp.1, 2009, https://doi.org/10.1016/j.jri.2012.11.001
  22. NEDD4 E3 ligase inhibits the activity of the Hippo pathway by targeting LATS1 for degradation vol.12, pp.24, 2009, https://doi.org/10.4161/cc.26672
  23. Mir-302 cluster exhibits tumor suppressor properties on human unrestricted somatic stem cells vol.35, pp.7, 2009, https://doi.org/10.1007/s13277-014-1844-x
  24. miR-374b-5p suppresses RECK expression and promotes gastric cancer cell invasion and metastasis vol.20, pp.46, 2014, https://doi.org/10.3748/wjg.v20.i46.17439
  25. miR-7 inhibits the invasion and metastasis of gastric cancer cells by suppressing epidermal growth factor receptor expression vol.31, pp.4, 2014, https://doi.org/10.3892/or.2014.3052
  26. miR-338-3p Suppresses Gastric Cancer Progression through a PTEN-AKT Axis by Targeting P-REX2a vol.12, pp.3, 2009, https://doi.org/10.1158/1541-7786.mcr-13-0507
  27. Targeting the Production of Oncogenic MicroRNAs with Multimodal Synthetic Small Molecules vol.9, pp.3, 2014, https://doi.org/10.1021/cb400668h
  28. MicroRNA and signaling pathways in gastric cancer vol.21, pp.8, 2009, https://doi.org/10.1038/cgt.2014.37
  29. miR-372 inhibits p62 in head and neck squamous cell carcinoma in vitro and in vivo vol.6, pp.8, 2015, https://doi.org/10.18632/oncotarget.3340
  30. MicroRNAs in tumorigenesis, metastasis, diagnosis and prognosis of gastric cancer vol.22, pp.6, 2009, https://doi.org/10.1038/cgt.2015.19
  31. Upregulation of miR-372 and -373 associates with lymph node metastasis and poor prognosis of oral carcinomas : miR-372 and -373 in OSCC vol.125, pp.11, 2009, https://doi.org/10.1002/lary.25464
  32. Low mir-372 expression correlates with poor prognosis and tumor metastasis in hepatocellular carcinoma vol.15, pp.None, 2009, https://doi.org/10.1186/s12885-015-1214-0
  33. Deep-sequencing identification of differentially expressed miRNAs in decidua and villus of recurrent miscarriage patients vol.293, pp.None, 2009, https://doi.org/10.1007/s00404-016-4038-5
  34. Long Non-Coding RNAs (lncRNAs) of Sea Cucumber: Large-Scale Prediction, Expression Profiling, Non-Coding Network Construction, and lncRNA-microRNA-Gene Interaction Analysis of lncRNAs in Apostichopus vol.18, pp.4, 2016, https://doi.org/10.1007/s10126-016-9711-y
  35. microRNA-372 Suppresses Migration and Invasion by Targeting p65 in Human Prostate Cancer Cells vol.35, pp.12, 2009, https://doi.org/10.1089/dna.2015.3186
  36. hsa-miR-376c-3p Regulates Gastric Tumor Growth Both In Vitro and In Vivo vol.2016, pp.None, 2009, https://doi.org/10.1155/2016/9604257
  37. miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2 vol.48, pp.5, 2016, https://doi.org/10.3892/ijo.2016.3405
  38. MicroRNA-524-5p suppresses the growth and invasive abilities of gastric cancer cells vol.11, pp.3, 2016, https://doi.org/10.3892/ol.2016.4143
  39. Upregulation of miR-34a by diallyl disulfide suppresses invasion and induces apoptosis in SGC-7901 cells through inhibition of the PI3K/Akt signaling pathway vol.11, pp.4, 2009, https://doi.org/10.3892/ol.2016.4266
  40. MicroRNAs in Pregnancy and Gestational Diabetes Mellitus: Emerging Role in Maternal Metabolic Regulation vol.17, pp.5, 2009, https://doi.org/10.1007/s11892-017-0856-5
  41. Decreased expression of hsa-miR-372 predicts poor prognosis in patients with gallbladder cancer by affecting chloride intracellular channel 1 vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7520
  42. microRNA-372 inhibits proliferation and induces apoptosis in human breast cancer cells by directly targeting E2F1 vol.16, pp.6, 2017, https://doi.org/10.3892/mmr.2017.7591
  43. Repression of MicroRNA‐372 by Arsenic Sulphide Inhibits Prostate Cancer Cell Proliferation and Migration through Regulation of large tumour suppressor kinase 2 vol.120, pp.3, 2009, https://doi.org/10.1111/bcpt.12687
  44. Differential MicroRNA Expression Profile of Colon Cancer Stem Cells Derived from Primary Tumor and HT-29 Cell line vol.10, pp.8, 2009, https://doi.org/10.5812/ijcm.8182
  45. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway vol.24, pp.9, 2009, https://doi.org/10.1038/cdd.2017.99
  46. Downregulation of ULK 1 by micro RNA ‐372 inhibits the survival of human pancreatic adenocarcinoma cells vol.108, pp.9, 2009, https://doi.org/10.1111/cas.13315
  47. Downregulation of MiR-31 stimulates expression of LATS2 via the hippo pathway and promotes epithelial-mesenchymal transition in esophageal squamous cell carcinoma vol.36, pp.1, 2009, https://doi.org/10.1186/s13046-017-0622-1
  48. MicroRNA-1225-5p behaves as a tumor suppressor in human glioblastoma via targeting of IRS1 vol.11, pp.None, 2009, https://doi.org/10.2147/ott.s178001
  49. miR-372 promotes breast cancer cell proliferation by directly targeting LATS2 vol.15, pp.3, 2018, https://doi.org/10.3892/etm.2018.5761
  50. miRNA-103a-3p Promotes Human Gastric Cancer Cell Proliferation by Targeting and Suppressing ATF7 in vitro vol.41, pp.5, 2009, https://doi.org/10.14348/molcells.2018.2078
  51. The aberrantly expressed miR-372 partly impairs sensitivity to apoptosis in parathyroid tumor cells vol.25, pp.7, 2009, https://doi.org/10.1530/erc-17-0204
  52. A novel microRNA, hsa-miR-6852 differentially regulated by Interleukin-27 induces necrosis in cervical cancer cells by downregulating the FoxM1 expression vol.8, pp.None, 2009, https://doi.org/10.1038/s41598-018-19259-4
  53. Modulation of oncogenic miRNA biogenesis using functionalized polyamines vol.8, pp.None, 2009, https://doi.org/10.1038/s41598-018-20053-5
  54. Inhibition of miR‐24 suppresses malignancy of human non‐small cell lung cancer cells by targeting WWOX in vitro and in vivo vol.9, pp.12, 2009, https://doi.org/10.1111/1759-7714.12824
  55. Propofol suppresses growth, migration and invasion of A549 cells by down-regulation of miR-372 vol.18, pp.None, 2009, https://doi.org/10.1186/s12885-018-5175-y
  56. The E2F1–miR-520/372/373–SPOP Axis Modulates Progression of Renal Carcinoma vol.78, pp.24, 2009, https://doi.org/10.1158/0008-5472.can-18-1662
  57. Scenario and future prospects of microRNAs in gastric cancer: A review vol.22, pp.4, 2019, https://doi.org/10.22038/ijbms.2019.32399.7765
  58. MicroRNA-372-3p Predicts Response of TACE Patients Treated with Doxorubicin and Enhances Chemosensitivity in Hepatocellular Carcinoma vol.20, pp.None, 2020, https://doi.org/10.2174/1871520620666200516145830
  59. miR-205: A Potential Biomedicine for Cancer Therapy vol.9, pp.9, 2009, https://doi.org/10.3390/cells9091957
  60. Aminoglycoside Conjugation for RNA Targeting: Antimicrobials and Beyond vol.26, pp.54, 2020, https://doi.org/10.1002/chem.202002258
  61. Placenta-derived macaque trophoblast stem cells: differentiation to syncytiotrophoblasts and extravillous trophoblasts reveals phenotypic reprogramming vol.10, pp.1, 2009, https://doi.org/10.1038/s41598-020-76313-w
  62. Activation of the miR-371/372/373 miRNA Cluster Enhances Oncogenicity and Drug Resistance in Oral Carcinoma Cells vol.21, pp.24, 2009, https://doi.org/10.3390/ijms21249442
  63. Retracted: Targeted Regulation of FoxO3a by miR-372 to Mediate Gastric Carcinoma Cell Apoptosis and DDP Drug Resistance vol.35, pp.10, 2009, https://doi.org/10.1089/cbr.2019.3299
  64. Synthetic RNA Modulators in Drug Discovery vol.64, pp.11, 2021, https://doi.org/10.1021/acs.jmedchem.1c00154
  65. Design and Implementation of Synthetic RNA Binders for the Inhibition of miR-21 Biogenesis vol.12, pp.6, 2009, https://doi.org/10.1021/acsmedchemlett.0c00682
  66. Potential Biomarkers of miR-371-373 Gene Cluster in Tumorigenesis vol.11, pp.9, 2009, https://doi.org/10.3390/life11090984