• Title/Summary/Keyword: Human body communications

Search Result 84, Processing Time 0.029 seconds

Analysis techniques for fermented foods microbiome (발효식품의 마이크로바이옴 분석 기술)

  • Cha, In-Tae;Seo, Myung-ji
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.2-10
    • /
    • 2017
  • Human have eaten various traditional fermented foods for a numbers of million years for health benefit as well as survival. The beneficial effects of fermented foods have been resulted from complex microbial communications within the fermented foods. Therefore, the holistic approaches for individual identification and complete microbial profiling involved in their communications have been of interest to food microbiology fields. Microbiome is the ecological community of microorganisms that literally share our environments including foods as well as human body. However, due to the limitation of culture-dependent methods such as simple isolations of just culturable microorganisms, the culture-independent methods have been consistently developed, resulting in new light on the diverse non-culturable and hitherto unknown microorganisms, and even microbial communities in the fermented foods. For the culture-independent approaches, the food microbiome has been deciphered by employing various molecular analysis tools such as fluorescence in situ hybridization, quantitative PCR, and denaturing gradient gel-electrophoresis. More recently, next-generation-sequencing (NGS) platform-based microbiome analysis has been of interest, because NGS is a powerful analytical tool capable of resolving the microbiome in respect to community structures, dynamics, and activities. In this overview, the development status of analysis tools for the fermented food microbiome is covered and research trend for NGS-based food microbiome analysis is also discussed.

Data Transmission Algorithm for LED Communication Systems (LED 통신 시스템의 데이터 전송 알고리즘)

  • Kim, Kyung Ho;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.44-49
    • /
    • 2013
  • LED communication is a wireless communication technology to transmit information using visible light coming out from the LED(Light Emitting Diode). It is a technique that can overcome RF(Radio Frequency) communication problems that are frequency allocations, human body hazards, security vulnerabilities, and interference between electronic devices. As a technique that can be used as lighting and communications with using LED, LED communication is suitable for ubiquitous environment. This paper introduces the process of data transmission algorithm for LED communication systems algorithm using LED, PD(Photodiode), and MCU(Micro Controller Unit).

A Study on LED Control System for Object Detecting based on Zigbee Network in BEMS (BEMS용 Zigbee 네트워크 기반 객체감지형 LED 조명 제어 시스템에 관한연구)

  • Ko, Kwangseok;Lee, JungHoon;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.17-21
    • /
    • 2013
  • A building energy-saving have been increased worldwide interest. There is continuing research on IT technology for efficient management of BEMS. Recently, It is able to control of LED and to maximize energy savings to the development of LED lighting technology. We propose the security image processing system to improve efficiency and we implement the real-time status monitoring system to surveil the object in the building energy management system. In this paper, we proposed the system of LED control using Zigbee network for connect the server. User is able to control LED light and monitering by the desktop. We implemented LED light control software on the based of Real-time monitering and LED control. Also detect human body movement.

Implementation of fall-down detection algorithm based on Image Processing (영상처리 기반 낙상 감지 알고리즘의 구현)

  • Kim, Seon-Gi;Ahn, Jong-Soo;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.56-60
    • /
    • 2017
  • This paper describes the design and implementation of fall-down detection algorithm based on image processing. The fall-down detection algorithm separates objects by using background subtraction and binarization after grayscale conversion of the input image acquired by the camera, and recognizes the human body by using labeling operation. The recognized human body can be monitored on the display image, and an alarm is generated when fall-down is detected. By using computer simulation, the proposed algorithm has shown a detection rate of 90%. We verify the feasibility of the proposed system by verifying the function by using the prototype test implemented on the DSP image processing board.

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.

Geant4-DICOM Interface-based Monte Carlo Simulation to Assess Dose Distributions inside the Human Body during X-Ray Irradiation

  • Kim, Sang-Tae
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.52-59
    • /
    • 2012
  • This study uses digital imaging and communications in medicine (DICOM) files acquired after CT scan to obtain the absorbed dose distribution inside the body by using the patient's actual anatomical data; uses geometry and tracking (Geant)4 as a way to obtain the accurate absorbed dose distribution inside the body. This method is easier to establish the radioprotection plan through estimating the absorbed dose distribution inside the body compared to the evaluation of absorbed dose using thermo-luminescence dosimeter (TLD) with inferior reliability and accuracy because many variables act on result values with respect to the evaluation of the patient's absorbed dose distribution in diagnostic imaging and the evaluation of absorbed dose using phantom; can contribute to improving reliability accuracy and reproducibility; it makes significance in that it can implement the actual patient's absorbed dose distribution, not just mere estimation using mathematical phantom or humanoid phantom. When comparing the absorbed dose in polymethly methacrylate (PMMA) phantom measured in metal oxide semiconductor field effect transistor (MOSFET) dosimeter for verification of Geant4 and the result of Geant4 simulation, there was $0.46{\pm}4.69%$ ($15{\times}15cm^2$), and $-0.75{\pm}5.19%$ ($20{\times}20cm^2$) difference according to the depth. This study, through the simulation by means of Geant4, suggests a new way to calculate the actual dose of radiation exposure of patients through DICOM interface.

Trends of Human Body Communications in WBAN (WBAN 인체통신 기술동향 분석)

  • Kim, S.E.;Park, H.I.;Lim, I.G.;Oh, K.I.;Kang, T.W.;Park, M.J.;Kang, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.6
    • /
    • pp.31-38
    • /
    • 2016
  • 인체에 근접한 다양한 휴대 정보 단말기 간의 통신망을 무선으로 구축하는 Wireless Body Area Network(WBAN) 분야에 관한 연구 결과가 국내외에서 지속적으로 발표되고 있다. 이 가운데 인체통신 기술은 인체를 신호의 전송경로로 활용하여 단말기들 간의 연결을 위한 케이블이 필요하지 않으며, 저전력 고속 데이터 전송이 가능하여 WBAN에 가장 적합한 통신 기술로 손꼽힌다. 더불어 인체통신 기술은 사용자의 간단한 접촉을 기반으로 인체 네트워크를 구성하므로 웨어러블 디바이스/센서/단말 및 임플란트 디바이스 분야에 반드시 필요한 핵심 통신 기술로 주목받고 있다. 본고에서는 WBAN에서 최근 인체통신 기술의 개발 동향과 활용 분야 및 표준화 동향에 관하여 살펴보고자 한다.

  • PDF

ELECTRICAL IMPEDANCE IMAGING FOR SEARCHING ANOMALIES

  • Ohin Kwon;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.459-485
    • /
    • 2001
  • The aim of EIT (electrical impedance tomography) system is to image cross-section conductivity distribution of a human body by means of both generating and sensing electrodes attached on to the surface of the body, where currents are injected and voltages are measured. EIT has been suffered from the severe ill-posedness which is caused by the inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. With a limited set of current-to-voltage data, figuring out full structure of the conductivity distribution could be extremely difficult at present time, so it could be worthwhile to extract some necessary partial information of the internal conductivity. We try to extract some key patterns of current-to-voltage data that furnish some core information on the conductivity distribution such s location and size. This overview provides our recent observation on the location search and the size estimation.

  • PDF

Analysis on Electromyogram(EMG) Signals by Body Parts for G-induced Loss of Consciousness(G-LOC) Prediction (G-induced Loss of Consciousness(G-LOC) 예측을 위한 신체 부위별 Electromyogram(EMG) 신호 분석)

  • Kim, Sungho;Kim, Dongsoo;Cho, Taehwan;Lee, Yongkyun;Choi, Booyong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.119-128
    • /
    • 2017
  • G-induced Loss of Consciousness(G-LOC) can be predicted by measuring Electromyogram(EMG) signals. Existing studies have mainly focused on specific body parts and lacked of consideration with quantitative EMG indices. The purpose of this study is to analyze the indices of EMG signals by human body parts for monitoring G-LOC condition. The data of seven EMG features such as Root Mean Square(RMS), Integrated Absolute Value(IAV), and Mean Absolute Value(MAV) for reflecting muscle contraction and Slope Sign Changes(SSC), Waveform Length (WL), Zero Crossing(ZC), and Median Frequency(MF) for representing muscle contraction and fatigue was retrieved from high G-training on a human centrifuge simulator. A total of 19 trainees out of 47 trainees of the Korean Air Force fell into G-LOC condition during the training in attaching EMG sensor to three body parts(neck, abdomen, calf). IAV, MAV, WL, and ZC under condition after G-LOC were decreased by 17 %, 17 %, 18 %, and 4 % comparing to those under condition before G-LOC respectively. Also, RMS, IAV, MAV, and WL in neck part under condition after G-LOC were higher than those under condition before G-LOC; while, those in abdomen and calf part lower. This study suggest that measurement of IAV and WL by attaching EMG sensor to calf part may be optimal for predicting G-LOC.

Proposal of a hierarchical topology and spatial reuse superframe for enhancing throughput of a cluster-based WBAN

  • Hiep, Pham Thanh;Thang, Nguyen Nhu;Sun, Guanghao;Hoang, Nguyen Huy
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.648-657
    • /
    • 2019
  • A cluster topology was proposed with the assumption of zero noise to improve the performance of wireless body area networks (WBANs). However, in WBANs, the transmission power should be reduced as low as possible to avoid the effect of electromagnetic waves on the human body and to extend the lifetime of a battery. Therefore, in this work, we consider a bit error rate for a cluster-based WBAN and analyze the performance of the system while the transmission of sensors and cluster headers (CHs) is controlled. Moreover, a hierarchical topology is proposed for the cluster-based WBAN to further improve the throughput of the system; this proposed system is called as the hierarchical cluster WBAN. The hierarchical cluster WBAN is combined with a transmission control scheme, that is, complete control, spatial reuse superframe, to increase the throughput. The proposed system is analyzed and evaluated based on several factors of the system model, such as signal-to-noise ratio, number of clusters, and number of sensors. The calculation result indicates that the proposed hierarchical cluster WBAN outperforms the cluster-based WBAN in all analyzed scenarios.