• Title/Summary/Keyword: Human antibody

Search Result 704, Processing Time 0.026 seconds

Prevalence of antibody against 38 kDa outer membrane protein of Yersinia enterocolitica in swine (국내 사육돼지에서의 Yersinia enterocolitica 38 kDa outer membrane protein에 대한 항체가 분포)

  • Shin, Seong-jae;Park, Joo-youn;Choi, In-soo;Shin, Na-ri;Yoo, Han-sang
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.73-78
    • /
    • 2001
  • Yersinia enterocolitica is an inhabitant in the lower intestinal tract of many domestic and wild animals as well as in the nature. Of the several forms of diseases caused by Y. enterocolitica, an acute enteritis, especially in young children, is the most common form. Infection of the bacteria usually occurs through fecal-oral route by contaminated foods or water, especially mountainspring water. Of the domestic animals, swine has been known as one of the most important carrier in the human infection. Based on the knowledge, prevalence of antibody against Y enterocolitica was investigated with swine sera collected from Korea for the survey of Y enterocolitica infection in swine. As the first step of this survey, we analyzed outer membrane protein (OMP) profiles of the representative strains of Y enterocolitica isolated from the feces of piglets and mountainspring water in Korea. Thirty-eight kDa OMP was identified as the common OMP regardless of origin, serotype, or biotype of Y enterocolitica isolates. Presence of antibody specific for 38 kDa OMP of Y enterocolitica in 1,076 swine sera collected from November 1999 to October 2000 was analysed with ELISA. Antibody titer in sows was significantly higher than that in piglets, growing pigs and finishing pigs (p<0.05). Also, there was seasonal difference in the prevalence of antibody against Y enterocolitica. These results would provide the basic knowledge for controlling the Y enterocolitica infection in human as well as swine.

  • PDF

Characterization of a Monoclonal Antibody Specific to Human Siah-1 Interacting Protein (인체 SIP 단백질에 특이적인 단일클론 항체의 특성)

  • Yoon, Sun Young;Joo, Jong Hyuck;Kim, Joo Heon;Kang, Ho Bum;Kim, Jin Sook;Lee, Younghee;Kwon, Do Hwan;Kim, Chang Nam;Choe, In Seong;Kim, Jae Wha
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Background: A human orthologue of mouse S100A6-binding protein (CacyBP), Siah-1-interacting protein (SIP) had been shown to be a component of novel ubiquitinylation pathway regulating $\beta$-catenin degradation. The role of the protein seems to be important in cell proliferation and cancer evolution but the expression pattern of SIP in actively dividing cancer tissues has not been known. For the elucidation of the role of SIP protein in carcinogenesis, it is essential to produce monoclonal antibodies specific to the protein. Methods: cDNA sequence coding for ORF region of human SIP gene was amplified and cloned into an expression vector to produce His-tag fusion protein. Recombinant SIP protein and monoclonal antibody to the protein were produced. The N-terminal specificity of anti-SIP monoclonal antibody was conformed by immunoblot analysis and enzyme linked immunosorbent assay (ELISA). To study the relation between SIP and colon carcinogenesis, the presence of SIP protein in colon carcinoma tissues was visualized by immunostaining using the monoclonal antibody produced in this study. Results: His-tag-SIP (NSIP) recombinant protein was produced and purified. A monoclonal antibody (Korea patent pending; #2003-45296) to the protein was produced and employed to analyze the expression pattern of SIP in colon carcinoma tissues. Conclusion: The data suggested that anti-SIP monoclonal antibody produced here was valuable for the diagnosis of colon carcinoma and elucidation of the mechanism of colon carcinogenesis.

Construction and Characterization of a Single-Chain Immunoglobulin

  • Kim, Youn-Kyu;Choi, In-Hak;Ryu, Chun-Jeih;Hong, Hyo-Jeong
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.177-181
    • /
    • 1997
  • We constructed a single-chain immunoglobulin in which the carboxyl end of the heavy chain variable domain is covalently joined to the amino terminus of the light chain variable domain via peptide linker and the carboxyl end of the light chain variable domain is linked to human ${\gamma}1$ Fc region through the hinge region. The molecule was expressed in Chinese hamster ovary cells, assembled into a dimeric molecule and secreted into the culture medium. The dimeric molecule (2E11) was purified from the culture supernatant by affinity chromatography on Protein G-Sepharose column. The size of the unreduced or reduced protein was the expected molecular weight of approximately 120 or 60 kDa, respectively, as assessed by SDS-polyacrylamide gel electrophoresis. The antigen-binding affinity of 2E11 was almost the same as that of a native antibody counterpart (CS131A), suggesting that the single-chain immunoglobulin may function like a native antibody.

  • PDF

Biochemical Application of IgG Fc-Binding Peptide: From Biochip to Targeted Nano Carrier

  • Chung, Sang J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.110-111
    • /
    • 2013
  • FcBP consisting of 13 amino acids specifically binds to Immunoglobulin G Fc domain. Initially, we utilized this peptide for preparation of antibody chip as a PEG composite for enhanced solubility. After then, the peptide conjugate was immobilized on agarose resin, resulting in highly efficient affinity column for antibody purification. The efficiency was comparable to commercial Protein A column. Recently, this peptide was conjugated with cell penetrating peptide (CPP) on a backbone of GFP, affording antibody transducer, which carries antibody into live cells by simple mixing of antibody and the transducer in cell culture media. Antibody transduction into cells was monitored by live cell imaging. More recently, the FcBP was fused to ferritin cage, which consists of 24 ferritin protein molecules. The FcBP-ferritin cage showed greatly increased binding affinity to human IgG. Its binding was analyzed by QCM and SPR analysis. Finally, it was selectively delivered by Herceptin to SKBR3, a breast cancer cell, over MCF10A, non-tumorigenic cells (Fig. 1). Fig. 1. Fluorescent microscopic images of SKBR3 breast cancer cells (A~C) and MCF10A breast cells (D~F) treated with Cy3-trastuzumab/fFcBP-Pf_Fn complexes. Trastuzumab and FcBP-Pf_Fn, which were labeled with Cy3 (Cy3-trastuzumab) and fluorescein (fFcBP-Pf_Fn), respectively, selectively targeted SKBR3 over MCF10A.

  • PDF

Radioimmunotherapy of Nude Mice Bearing Human Colon Carcinoma with I-131 Labeled Anti-carcinoembryonic Antigen Monoclonal Antibody (누드마우스에 이식된 인체대장암에서 I-131표지 항태아성암항원 단일클론항체를 이용한 방사면역치료법 : 치료성적에 관계되는 인자분석)

  • Kim, Byung-Tae;Lee, Kyung-Han;Kim, Sang-Eun;Choi, Yong;Chi, Dae-Yoon;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Chung, Hong-Keun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.3
    • /
    • pp.332-342
    • /
    • 1995
  • This study was designed to evaluate the effects of various factors on the therapeutic effect of the I-131 labeled anti-carcinoembryonic antigen monoclonal antibody(anti-CEA antibody). Tetrazolium-based colorimetric assay (MTT) was used to compare in vitro cytotoxicity of 3 Korean colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5) for selection of proper 2 cell lines in this study. The changes of the size of tumor which was xenografted to nude mice (balb/c nu/nu) were compared in 4 groups (group treated I-131 labeled anti-CEA antibody, group treated with non-radiolabeled anti-CEA antibody, group treated with I-131 labeled anti-human chorionic gonadotropin monoclonal antibody (anti-hCG antibody) as nonspecific antibody, and group injected with normal saline as a control). Immunohistochemical staining and in vivo autoradiography were performed after excision of the xenografted tumor. The results were as below mentioned. The in vitro cytotoxic effect of I-131 labeled anti-CEA antibody is most prominent in SNU-C5 cell line between 3 cancer cell lines. The changes of xenografted tumor size in both SNU-C4 and SNU-5S cell tumors at the thirteenth day after injection of the antibodies were smallest in the group treated with I-131 labeled anti-CEA antibody (SNU-C4/SNU-C5; 324/342%) comparing with other groups, group treated with anti-CEA antibody (622/660%), group treated with I-131 anti-hCG antibody (538/546%), and control group(1030/724%)(P<0.02 in SNU-C4 and P<0.1 in SNU-C5 at the 13th day after injection of antibodies). On the thirteenth day after injection of the antibodies nude mice were sacreficed to count the radiouptake of tumor and to check the changes of tumor size. Correlations between radiouptake and change of tumor size were calculated in each groups and significant negative correlation was only obtained in the group treated with I-131 anti-CEA antibody (p<0.05). There were no correlations between antigenic expression of carcinoembryonic antigen and distribution of anti-CEA antibody in both SNU-C4 and SNU-C5 cell tumors on immunoperoxidase staining. On in vivo autoradiography the distributions of anti-CEA antibody were heterogeneous and the intensities of binding were various in SNU-C4 and SNU-C5 cell tumors. It is concluded that I-131 labeled tumor-specific monoclonal antibody, anti-CEA antibody is effective in suppressing the xenografted tumor growth and the effect is influenced by sensitivity of tumor cell itself to the radiolabeled antibody and other local factors instead of specificity of antibody.

  • PDF

Targeting cell surface glucose-regulated protein 94 in gastric cancer with an anti-GRP94 human monoclonal antibody

  • Hyun Jung Kim;Yea Bin Cho;Kyun Heo;Ji Woong Kim;Ha Gyeong Shin;Eun-bi Lee;Seong-Min Park;Jong Bae Park;Sukmook Lee
    • BMB Reports
    • /
    • v.57 no.4
    • /
    • pp.188-193
    • /
    • 2024
  • Gastric cancer (GC), a leading cause of cancer-related mortality, remains a significant challenge despite recent therapeutic advancements. In this study, we explore the potential of targeting cell surface glucose-regulated protein 94 (GRP94) with antibodies as a novel therapeutic approach for GC. Our comprehensive analysis of GRP94 expression across various cancer types, with a specific focus on GC, revealed a substantial overexpression of GRP94, highlighting its potential as a promising target. Through in vitro and in vivo efficacy assessments, as well as toxicological analyses, we found that K101.1, a fully human monoclonal antibody designed to specifically target cell surface GRP94, effectively inhibits GC growth and angiogenesis without causing in vivo toxicity. Furthermore, our findings indicate that K101.1 promotes the internalization and concurrent downregulation of cell surface GRP94 on GC cells. In conclusion, our study suggests that cell surface GRP94 may be a potential therapeutic target in GC, and that antibody-based targeting of cell surface GRP94 may be an effective strategy for inhibiting GRP94-mediated GC growth and angiogenesis.

Ultrastructural Localization of Cryptosporidium parvum Antigen Using Human Patients Sera

  • Lee, Jong-Gyu;Han, Eun-Taek;Park, Woo-Yoon;Yu, Jae-Ran
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.2
    • /
    • pp.171-174
    • /
    • 2009
  • The antigen location of Cryptosporidium parvum, which stimulates antibody formation in humans and animals, was investigated using infected human sera. Immuno-electron microscopy revealed that antigenicity-inducing humoral immunity was located at various developmental stages of parasites, including asexual, sexual stages, and oocysts. The amount of antigen-stimulating IgG antibodies was particularly high on the oocyst wall. The sporozoite surface was shown to give stimulation on IgG and IgM antibody formation. Trophozoites implicated the lowest antigenicity to humoral immunity, both IgG and IgM, by showing the least amount of gold labeling. Immunogold labeling also provided clues that antigens were presented to the host-cell cytoplasm via feeder organelles and host-parasite junctions.

Use of Antibody Displayed Phage for the Detection of Dextran Using a Dipstick Assay and Transmission Electron Micrograph

  • Kim Du-Woon;Day Donal F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1316-1319
    • /
    • 2006
  • An antibody displayed phage collection (SBAE-2R), screened from a human synthetic phage antibody library (Fab 21ox), was used for the determination of dextran. The dextran-binding affinity was determined by serologically specific transmission electron microscopy (TEM) and a paper dipstick assay. The phage collection was distributed over the dextrancoated grids with 39$\pm$25 phages/$\mu$m$^2$ on the grids. Phages were not seen on dextran-coated grids exposed to the Fab 2lox phage library. The phage collection (SBAE-2R) produced 54$\pm$3 color normalized intensity (N.I.) from 125 ppm to 1,000 ppm of dextran and 5$\pm$1 (N.I.) for 63 ppm of dextran in a paper dipstick assay. This research extends the analytical options for dextran analysis by antibody displayed phage with a minimum of equipment usage.

Protein Array Fabricated by Microcontact Printing for Miniaturized Immunoassay

  • Lee Woo-Chang;Lim Sang-Soo;Choi Bum-Kyoo;Choi Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1216-1221
    • /
    • 2006
  • A protein array was fabricated for a miniaturized immunoassay using microcontact printing ($\mu$CP). A polydimethylsiloxane (PDMS) stamp with a 5 $\mu$m$\times$5 /$\mu$m dimension was molded from a silicon master developed by photolithography. Under optimal fabrication conditions, including the baking, incubation, and exposure time, a silicon master was successfully fabricated with a definite aspect ratio. An antibody fragment was utilized as the ink for the $\mu$CP, and transferred to an Au substrate because of the Au-thiol (-SH) interaction. The immobilization and antibody-antigen interaction were investigated with fluorescence microscopy. When human serum albumin (HSA) was applied to the protein array fabricated with an antibody against HSA, the detection limit was 100 pg/ml of HSA when using a secondary antibody labeled with a fluorescence tag. The fabricated protein array maintained its activity for 14 days.

Characterization of the Monoclonal Antibody Specific to Human S100A2 Protein (인체 S100A2 단백질에 특이적인 단일클론 항체)

  • Kim, Jae Wha;Yoon, Sun Young;Kim, Joo Heon;Joo, Jong-Hyuck;Kim, Jin Sook;Lee, Younghee;Yeom, Young Il;Choe, Yong-Kyung;Choe, In Seong
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Background: The S100A2 gene, also known as S100L or CaN19, encodes a protein comprised of 99-amino acids, is a member of the calcium-binding proteins of EF-hand family. According to a recent study, this gene was over-expressed in several early and malignant carcinomas compared to normal tissues. To elucidate the role of S100A2 protein in the process during carcinogenesis, production of monoclonal antibody specific to the protein is essential. Methods: First, cDNA sequence coding for ORF region of human S100A2 gene was amplified and cloned into an expression vector to produce GST fusion protein. Recombinant S100A2 protein and subsequently, monoclonal antibody to the protein were produced. The specificity of anti-S100A2 monoclonal antibody was confirmed by immunoblot analysis of cross reactivity to other recombinant proteins of S100A family (GST-S100A1, GST-S100A4 and GST-S100A6). To confirm the relation of S100A2 to cervical carcinogenesis, S100A2 protein in early cervical carcinoma tissue was immunostained using the monoclonal antibody. Results: GST-S100A2 recombinant protein was purified by affinity chromatography and then fusion protein was cleaved and S100A2 protein was isolated. The monoclonal antibody (KK0723; Korean patent pending #2001-30294) to the protein was produced and the antibody did not react with other members of EF-hand family proteins such as S100A1, S100A4 and S100A6. Conclusion: These data suggest that anti-S100A2 monoclonal antibody produced in this study can be very useful for the early detection of cervical carcinoma and elucidation of mechanism during the early cervical carcinogenesis.