• Title/Summary/Keyword: Human Response Model

Search Result 434, Processing Time 0.027 seconds

Design of Dialogue Management System for Home Network Control (홈네트워크 제어를 위한 대화관리시스템 설계)

  • Kim, Hyun-Jeong;Eun, Ji-Hyun;Chang, Du-Seong;Choi, Joon-Ki;Koo, Myung-Wan
    • Proceedings of the KSPS conference
    • /
    • 2006.11a
    • /
    • pp.109-112
    • /
    • 2006
  • This paper presents a dialogue interface using the dialogue management system as a method for controlling home appliances in Home Network Services. In order to realize this type of dialogue interface, we first investigated the user requirements for Home Network Services by analyzing the dialogues entered by users. Based on the analysis, we were able to extract 15 user intentions and 22 semantic components. In our study, example dialogues were collected from WOZ (Wizard-of-OZ) environment to implement a reasoning model for generating meaningful responses for example-based dialogue modeling technique. An overview of the Home Network Control System using proposed dialogue interface will be presented. Lastly, we will show that the Dialogue Management System trained with our collected dialogues behaves properly to achieve its task of controlling Home Network appliances by going through the steps of natural language understanding, response reasoning, response generation.

  • PDF

Biomechanical Characterization with Inverse FE Model Parameter Estimation: Macro and Micro Applications (유한요소 모델 변수의 역 추정법을 이용한 생체의 물성 규명)

  • Ahn, Bum-Mo;Kim, Yeong-Jin;Shin, Jennifer H.;Kim, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1202-1208
    • /
    • 2009
  • An inverse finite element (FE) model parameter estimation algorithm can be used to characterize mechanical properties of biological tissues. Using this algorithm, we can consider the influence of material nonlinearity, contact mechanics, complex boundary conditions, and geometrical constraints in the modeling. In this study, biomechanical experiments on macro and micro samples are conducted and characterized with the developed algorithm. Macro scale experiments were performed to measure the force response of porcine livers against mechanical loadings using one-dimensional indentation device. The force response of the human liver cancer cells was also measured by the atomic force microscope (AFM). The mechanical behavior of porcine livers (macro) and human liver cancer cells (micro) were characterized with the algorithm via hyperelastic and linear viscoelastic models. The developed models are suitable for computing accurate reaction force on tools and deformation of biomechanical tissues.

A Study on Designing an Education Cooperation Model for HRD in Asia-Pacific Region: Focusing on Education Project of APEC

  • JANG, Hwan Young;YEON, Kyung Sim
    • Educational Technology International
    • /
    • v.21 no.1
    • /
    • pp.31-67
    • /
    • 2020
  • The purpose of this study was to propose an education cooperation model for Human Resources Development (HRD) in Asia-Pacific region in response to environmental changes in business and industry. In order to carry out the model, this study reviewed the key features of human resources in the APEC which is a symbolic regional integration entity in Asia-Pacific region, shaped critical issues related with HRD in this region and then analyzed the trends of education cooperation projects conducted by the APEC in terms of topics, implementation methods and proposing economies of the projects. In result, this study proposed a triangular education cooperation model for HRD consisting of three elements: Voluntary Partnership, Information on Needs and Support for Cooperation. These interconnected and interdependent elements were designed to encourage actors to participate in education cooperative activities with their own willingness, produce and manage research-based information required for sustainable cooperation and support communication and connectivity among actors for effective activities. Also, this study expected that this model would make a commitment to narrowing educational divides, enhancing global-standard skills development, facilitating public and private partnership and organizing the foundation of future education for cultivating creative talents in the era of innovation for APEC members.

A Study ef Biomechanical Response in Human Body during Whole-Body Vibration through Musculoskeletal Model Development (전신 진동운동기 사용시 인체에 대한 생체역학적 특성 분석을 위한 가상 골격계 모델의 개발 및 검증)

  • Choi, Hyun-Ho;Lim, Do-Hyung;Hwang, Seon-Hong;Kim, Young-Ho;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.155-163
    • /
    • 2008
  • This study investigated biomechanical response through the 3-dimensional virtual skeletal model developed and validated. Ten male subjects in standing posture were exposed to whole body vibrations and measured acceleration on anatomical of interest (head, $7^{th}$ cervical, $10^{th}$ thoracic, $4^{th}$ lumbar, knee joint and bottom of the vibrator). Three dimensional virtual skeletal model and vibration machine were created by using BRG LifeMOD and MSC.ADAMS. The results of forward dynamic analysis were compared with results of experiment. The results showed that the accuracy of developed model was $73.2{\pm}19.2%$ for all conditions.

Immunotherapeutic Effects of CTLA4Ig Fusion Protein on Murine EAE and GVHD (마우스 EAE, GVHD 질환에서 CTLA4Ig 융합단백의 면역치료 효과)

  • Jang, Seong-Ok;Hong, Soo-Jong;Cho, Hoon-Sik;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.302-309
    • /
    • 2003
  • Background: CTLA4 (CD152), which is expressed on the surface of T cells following activation, has a much higher affinity for B7 molecules comparing to CD28, and is a negative regulator of T cell activation. In contrast to stimulating and agonistic capabilities of monoclonal antibodies specific to CTLA-4, CTLA4Ig fusion protein appears to act as CD28 antagonist and inhibits in vitro and in vivo T cell priming in variety of immunological conditions. We've set out to confirm whether inhibition of the CD28-B7 costimulatory response using a soluble form of human CTLA4Ig fusion protein would lead to persistent inhibition of alloreactive T cell activation. Methods: We have used CHO-$dhfr^-$ cell-line to produce CTLA4Ig fusion protein. After serum free culture of transfected cell line we purified this recombinant molecule by using protein A column. To confirm characterization of fusion protein, we carried out a series of Western blot, SDS-PAGE and silver staining analyses. We have also investigated the efficacy of CTLA4Ig in vitro such as mixed lymphocyte reaction (MLR) & cytotoxic T lymphocyte (CTL) response and in vivo such as experimental autoimmune encephalomyelitis (EAE), graft versus host disease (GVHD) and skin-graft whether this fusion protein could inhibit alloreactive T cell activation and lead to immunosuppression of activated T cell. Results: In vitro assay, CTLA4Ig fusion protein inhibited immune response in T cell-specific manner: 1) Human CTLA4Ig inhibited allogeneic stimulation in murine MLR; 2) CTLA4Ig prevented the specific killing activity of CTL. In vivo assay, human CTLA4Ig revealed the capacities to induce alloantigen-specific hyporesponsiveness in mouse model: 1) GVHD was efficiently blocked by dose-dependent manner; 2) Clinical score of EAE was significantly decreased compared to nomal control; 3) The time of skin-graft rejection was not different between CTLA4Ig treated and control group. Conclusion: Human CTLA4Ig suppress the T cell-mediated immune response and efficiently inhibit the EAE, GVHD in mouse model. The mechanism of T cell suppression by human CTLA4Ig fusion protein may be originated from the suppression of activity of cytotoxic T cell. Human CTLA4Ig could not suppress the rejection in mouse skin-graft, this finding suggests that other mechanism except the suppression of cytotoxic T cell may exist on the suppression of graft rejection.

Development of a Platform for Realistic Garment Drape Simulation

  • Kim, Sung-Min;Park, Chang-Kyu
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.436-441
    • /
    • 2006
  • An integrated platform for garment drape simulation system has been developed. In this system, garment patterns from conventional two-dimensional CAD systems can be assembled into a three-dimensional garment on a parametrically resizable realistic human body model. A fast and robust particle-based physical calculation engine has been developed for garment shape generation. Then a series of geometric and graphical techniques were applied to create realistic impressions on simulated garments. This system can be used as the rapid prototyping tool for garments in the future quick-response system.

Optimization of Soybean Pudding Using Response Surface Methodology

  • Jung, Eun-Kyung;Joo, Na-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.6
    • /
    • pp.717-726
    • /
    • 2011
  • Response surface methodology (RSM) was performed in order to determine the optimal mixing conditions of different amounts of egg and sugar for the preparation of soybean pudding. The experiments were designed according to a central composite design by designating whole egg and sugar content as independent variables. Meanwhile, sweetness, Commission Internationale de I'Eclairage (CIE) color parameters (L*, a* and b* values), hardness, cohesiveness, springiness, and gumminess were response variables. Overall optimization, conducted by overlaying the contour plots under investigation, was able to determine the optimal range of dependent variables within which the 14 responses were simultaneously optimized. The point chosen as a representative of this optimal region corresponded to 50.00 g of whole egg and 31.66 g of sugar. Under these conditions, the model predicted L* value=80.03, a* value=-5.44, b* value=27.86, sweetness=21.23 ($^{\circ}Brix$), hardness=$25.45{\times}10^5$ (dyne/$cm^2$), cohesiveness=67.90 (%), springiness=46.20 (%), and gumminess=12.71 (g).

A METHOD FOR ESTIMATING MECHANICAL PARAMETERS OF INTACT HUMAN MUSLE

  • Park, Hyung-Jun;Kusmoto, Hidetada;Akazawa, Kenzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1867-1872
    • /
    • 1991
  • A method of estimating mechanical parameters of the intact human muscle is proposed; force responses to ramp length perturbation of the muscle both at the resting and constant contracting states are compared with those of the model. The response during the short period (50ms) after the onset of the perturbation is used for the estimation. Time course of the length perturbation which could lead to the accurate estimation is determined by model analysis. Availability of this method is showed by applying it to the human thumb flexor muscle.

  • PDF

A Study on the Behavior of Human Right Arm under Impact Condition (외부 충격시 우측팔의 생체역학적 거동해석)

  • Chae, Je-Wook;Lee, Joon-Ho;Kim, Hyun-Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.152-158
    • /
    • 2009
  • In this paper, the right arm was modelled by muscle-skeleton elements to obtain the behavior of right arm of human under impact condition, where physical and geometrical properties of human body such as Young's modulus, shear modulus, cross sectional area, length, density, moment of inertia and position were defined. Based on the numerical model of the right arm, the impact response of the right arm was obtained. By the comparison with the experimental results, the model of the right arm was verified.

HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines

  • Seo, Min-Duk;Kang, Tae-Jin;Lee, Chang-Hoon;Lee, Ai-Young;Noh, Min-Soo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.171-176
    • /
    • 2012
  • HaCaT cells are the immortalized human keratinocytes and have been extensively used to study the epidermal homeostasis and its pathophysiology. T helper cells play a role in various chronic dermatological conditions and they can affect skin barrier homeostasis. To evaluate whether HaCaT cells can be used as a model cell system to study abnormal skin barrier development in various dermatologic diseases, we analyzed the gene expression profile of epidermal differentiation markers of HaCaT cells in response to major T helper (Th) cell cytokines, such as $IFN{\gamma}$, IL-4, IL-17A and IL-22. The gene transcriptional profile of cornified envelope-associated proteins, such as filaggrin, loricrin, involucrin and keratin 10 (KRT10), in HaCaT cells was generally different from that in normal human keratinocytes (NHKs). This suggests that HaCaT cells have a limitation as a model system to study the pathophysiological mechanism associated with the Th cell cytokine-dependent changes in cornified envelope-associated proteins which are essential for normal skin barrier development. In contrast, the gene transcription profile change of human ${\beta}2$-defensin (HBD2) in response to $IFN{\gamma}$, IL-4 or IL-17A in HaCaT cells was consistent with the expression pattern of NHKs. $IFN{\gamma}$ also up-regulated transglutaminase 2 (TGM2) gene transcription in both HaCaT cells and NHKs. As an alternative cell culture system for NHKs, HaCaT cells can be used to study molecular mechanisms associated with abnormal HBD2 and TGM2 expression in response to $IFN{\gamma}$, IL-4 or IL-17A.