• 제목/요약/키워드: Human Movements

검색결과 496건 처리시간 0.029초

Diagnosing Reading Disorders based on Eye Movements during Natural Reading

  • Yongseok Yoo
    • Journal of information and communication convergence engineering
    • /
    • 제21권4호
    • /
    • pp.281-286
    • /
    • 2023
  • Diagnosing reading disorders involves complex procedures to evaluate complex cognitive processes. For an accurate diagnosis, a series of tests and evaluations by human experts are required. In this study, we propose a quantitative tool to diagnose reading disorders based on natural reading behaviors using minimal human input. The eye movements of the third- and fourth-grade students were recorded while they read a text at their own pace. Seven machine learning models were used to evaluate the gaze patterns of the words in the presented text and classify the students as normal or having a reading disorder. The accuracy of the machine learning-based diagnosis was measured using the diagnosis by human experts as the ground truth. The highest accuracy of 0.8 was achieved by the support vector machine and random forest classifiers. This result demonstrated that machine learning-based automated diagnosis could substitute for the traditional diagnosis of reading disorders and enable large-scale screening for students at an early age.

슬랙스 설계를 위한 하지동작에 따른 체표선 변화 1 (Changes in Body Surface Lines Caused By Lower Limb Movements in Designing Slacks (I))

  • 조성희
    • 한국가정과학회지
    • /
    • 제7권3호
    • /
    • pp.15-33
    • /
    • 2004
  • A precise understanding of the human form in static pose serves as the basis of designing clothing. When the human body is in motion, however, even an article of clothing designed to fit the human form in static pose can pull and change, thus restricting the body. In order to increase the fit of the clothing, which may be termed the second skin, its form and measurements therefore must be determined in correlation not only with the formal characteristics of the human body, in static pose but also with its functional characteristics in motion, as caused by the movements of the human body. In this study, the motion factor was selected as the primary basis for designing slacks with good fit in both static and moving states. By indentifying the areas in which lower limb movement cause significant changes in body surface lines, we suggest several application methods for designing slacks. Using unmarried female university students aged 18 - 24 as subjects, a total of 32 body surface categories (15 body surface lines and 17 body surface segment lines) were measured in one static and 9 movement poses. In particular, expansion and contraction levels and rates were measured and used in the analysis. The analysis first involved the calculation of the average measurement per body part in body surface line in static pose as well as of the average expansion and contraction levels and rates in 9 lower limb movements. Two-way MANOVA and multiple comparison analysis (Tukey) were conducted on movements and individual somatotypes regarding measurement per body part and expansion and contraction rates. Body parts whose measurements of body surface lines differed significantly in body surface line in static pose versus in movement were then identified. The results of this study are as follows. First, changes in body surface lines caused by lower limb movements were significant in all body surface lines of the lower trunk, both horizontal and vertical, with the exception of abdomen girth, midway thigh girth, ankle girth, hip length, and posterior knee girth. Second, significantly expanded 10 body surface lines in moving pose were detected and illustrated in table 4. These body parts should be studied in designing or pattern designing, especially for close-fitting pants, in using stretch fabric, and in sensory evaluation of good fit during movement.

  • PDF

진동감지를 이용한 사용자 걸음걸이 인식 (Estimating Human Walking Pace and Direction Using Vibration Signals)

  • 정은석;김대은
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.481-485
    • /
    • 2014
  • In service robots, a number of human movements are analyzed using a variety of sensors. Vibration signals from walking movements of a human provide useful information about the distance and the movement direction of the human. In this paper, we measure the intensity of vibrations and detect both human walking pace and direction. In our experiments, vibration signals detected by microphone sensors provide good estimation of the distance and direction of a human movement. This can be applied to HRI (Human-Robot Interaction) technology.

Wireless Interface of Motion between Human and Robot

  • Jung, Seul;Jeon, Poong-Woo;Cho, Hyun-Taek;Jang, Pyung-Soo;Cho, Ki-Ho;Kim, Jeong-Gu;Song, Duck-Hee;Choi, Young-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.59.4-59
    • /
    • 2001
  • In this paper, wireless interface of the motion between human and robot is implemented. The idea is that if a human who is equiped with device including accelerometer and rate-gyro sensor move his/her arm, then the robot follows human motion. The robot is designed as wheeled type mobile robot with two link arms. The robot´s basic movements such as forward, backward, left, right movement can be controlled from foot sensor which human steps on. Arm movements can be controlled by arm motion of human motion. In order to detect human motion, sensor data analysis from gyro and accelerometer has to be done. Data from sensors are transferred through wireless communication to activate the robot.

  • PDF

A Three-Degree-of-Freedom Anthropomorphic Oculomotor Simulator

  • Bang Young-Bong;Paik Jamie K.;Shin Bu-Hyun;Lee Choong-Kil
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.227-235
    • /
    • 2006
  • For a sophisticated humanoid that explores and learns its environment and interacts with humans, anthropomorphic physical behavior is much desired. The human vision system orients each eye with three-degree-of-freedom (3-DOF) in the directions of horizontal, vertical and torsional axes. Thus, in order to accurately replicate human vision system, it is imperative to have a simulator with 3-DOF end-effector. We present a 3-DOF anthropomorphic oculomotor system that reproduces realistic human eye movements for human-sized humanoid applications. The parallel link architecture of the oculomotor system is sized and designed to match the performance capabilities of the human vision. In this paper, a biologically-inspired mechanical design and the structural kinematics of the prototype are described in detail. The motility of the prototype in each axis of rotation was replicated through computer simulation, while performance tests comparable to human eye movements were recorded.

지능 접속을 위한 인체 운동 포착 및 재현 시스템 (A motion capture and mimic system for intelligent interactions)

  • 윤중선
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.585-592
    • /
    • 1999
  • A new paradigm of technology, based on the overall interactions of technology, human and environment, is explored. History of technology and machines is reviewed in terms of the interactions of human and machines. Two main concepts of intelligent interactions proposed, holism and embodiment, are based on the interactions of machines and human through human body : Korperlichkeit ( corporeality). Human body movements are the result of long periods of evolution and, thus, are very optimized motions. Complicated and flexible motions could be easily achieved by mimicking human body movements. Motion capture and mimic systems based on the electromagnetic, visual, and gyroscopic type trackers, are being implemented to demonstrate these concepts. Also, various motion mappings are investigated on these interactive systems. By exploring a new paradigm of technology through Korperlichkeit, an oriental view of technology as relativities may evolve to embrace the limitations of western view of machines as an absolute independent form.

  • PDF

고개운동에 의한 단순 비언어 의사표현의 비전인식 (Vision-based recognition of a simple non-verbal intent representation by head movements)

  • 유기호;노덕수;이성철
    • 대한인간공학회지
    • /
    • 제19권1호
    • /
    • pp.91-100
    • /
    • 2000
  • In this paper the intent recognition system which recognizes the human's head movements as a simple non-verbal intent representation is presented. The system recognizes five basic intent representations. i.e., strong/weak affirmation. strong/weak negation, and ambiguity by image processing of nodding or shaking movements of head. The vision system for tracking the head movements is composed of CCD camera, image processing board and personal computer. The modified template matching method which replaces the reference image with the searched target image in the previous step is used for the robust tracking of the head movements. For the improvement of the processing speed, the searching is performed in the pyramid representation of the original image. By inspecting the variance of the head movement trajectories. we can recognizes the two basic intent representations - affirmation and negation. Also, by focusing the speed of the head movements, we can see the possibility which recognizes the strength of the intent representation.

  • PDF

달리기 속도에 따른 인체 안정성의 생체역학적 분석: 리아프노프 지수와 변이계수 방법의 비교 분석 (Biomechanical Analysis of Human Stability According to Running Speed: A Comparative Analysis of Lyapunov Exponent and Coefficient of Variation Methods)

  • Ho-Jong Gil
    • 한국운동역학회지
    • /
    • 제33권1호
    • /
    • pp.34-44
    • /
    • 2023
  • Objective: The purpose of this study was to examine the effects of increasing running speed on human stability by comparing the Lyapunov Exponent (LyE) and Coefficient of Variation (CV) methods, with the goal of identifying key variables and uncovering new insights. Method: Fourteen adult males (age: 24.7 ± 6.4 yrs, height: 176.9 ± 4.6 cm, weight: 74.7 ± 10.9 kg) participated in this study. Results: In the CV method, significant differences were observed in ankle (flexion-inversion/eversion; p < .05) and hip joint (internal-external rotation; p < .05) movements, while the center of mass (COM) variable in the coronal axis movements showed a significant difference at the p < .001 level. In the LyE method, statistical differences were observed at the p < .05 level in knee (flexion-extension), hip joint (internal-external rotation) movements, and COM across all three directions (sagittal, coronal, and transverse axis). Conclusion: Our results revealed that the stability of the human body is affected at faster running speeds. The movement of the COM and ankle joint were identified as the most critical factors influencing stability. This suggests that LyE, a nonlinear time series analysis, should be actively introduced to better understand human stabilization strategies.

라반의 공간조화이론 "코레우틱스(Choreutics)"를 활용한 움직임의 추상적 시각화 연구 (A Study on the Abstraction of Movements Based on Laban's Space Theory "Choreutics")

  • 김혜란;이상욱
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권3호
    • /
    • pp.371-381
    • /
    • 2017
  • 본 논문에서는 인간 움직임에 관한 이론들 중 현대무용 이론가인 루돌프 폰 라반(Rudolf von Laban)의 움직임 분석(Laban Movement Analysis)을 중심으로 추상 애니메이션의 제작 방법론을 소개한다. 라반의 이론은 다양한 인간의 움직임들을 묘사하고 시각화하고 해석하고 문서화하기 위한 도구와 언어를 모두 포함하며 그 중 공간조화이론인 코레우틱스(Choreutics)는 고대로부터 정의된 자연의 보편적인 패턴과 자연의 일부인 인간의 보편적 디자인에 기반하고 있다. 라반은 근본적으로 움직임의 공간을 이원론적 방식으로 정의하였는데 외형적으로는 점, 선, 면, 다각형, 그리고 선형, 비선형 움직임과 같은 기하학과 모션 프리미티브의 관점에서의 객관적이고 과학적인 정의를 통해 컴퓨터 그래픽스에서 인간의 움직임을 생성하기 위한 구체적인 기반을 제공하였다. 또 한편으로는 움직임의 내적인 의도와 관련하여 나타나는 역동적 운동성의 미묘한 특징들을 이해할 수 있는 시스템을 제공하였다. 라반의 해석은 다양한 시각적 분석방식을 통해 조형예술과 컴퓨터 아트 양쪽 분야에서 활용될 수 있는 잠재적인 가치를 지니고 있다. 본 연구는 움직임에 대한 신체적, 심리적 분석에서 영감을 얻었으며 추상 애니메이션을 제작하기 위해 컴퓨터 알고리즘을 개발하였다. "코레오그래피(Choreography)"라고 명명된 일련의 컴퓨터 애니메이션 작품들은 문화체육관광부와 한국공예·디자인문화진흥원이 주최·주관한 "2015 공예트렌드페어(Craft Trend Fair)"의 주제관 <손에 담긴 미래>와 2016년 주영한국문화원의 "움직임을 만드는 사물(Make Your Movements: Korean Contemporary Objects)"등 다수의 전시에 소개되었다. 본 논문에서는 라반의 움직임에 관한 표현을 기초로 추상적 조형요소들의 움직임을 제작하기 위한 아이디어와 방법들을 설명한다.

여러 대의 키넥트 뎁스 카메라를 이용한 인간공학 시뮬레이션 모델링 자동화에 관한 연구 (A Study on Modeling Automation of Human Engineering Simulation Using Multi Kinect Depth Cameras)

  • 전찬모;이주연;노상도
    • 한국CDE학회논문집
    • /
    • 제21권1호
    • /
    • pp.9-19
    • /
    • 2016
  • Applying human engineering simulation to analyzing work capability and movements of operators during manufacturing is highly demanded. However, difficulty in modeling digital human required for simulation makes engineers to be reluctant to utilize human simulation for their tasks. This paper addresses such problem on human engineering simulation by developing the technology to automatize human modeling with multiple Kinects at different depths. The Kinects enable us to acquire the movements of digital human which are essential data for implementing human engineering simulation. In this paper, we present a system for modeling automation of digital human. Especially, the system provides a way of generating the digital model of workers' movement and position using multiple Kinects which cannot be generated by single Kinect. Lastly, we verify the effects of the developed system in terms of modeling time and accuracy by applying the system to four different scenarios. In conclusion, the proposed system makes it possible to generate the digital human model easily and reduce costs and time for human engineering simulation.