• 제목/요약/키워드: Human Motor Control

검색결과 162건 처리시간 0.031초

상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한 (Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint)

  • 김현철;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

뇌전도 기반 마우스 제어를 위한 동작 상상 뇌 신호 분석 (Motor Imagery Brain Signal Analysis for EEG-based Mouse Control)

  • 이경연;이태훈;이상윤
    • 인지과학
    • /
    • 제21권2호
    • /
    • pp.309-338
    • /
    • 2010
  • 본 논문에서는 사지가 마비되어 신체를 움직이지 못하지만 뇌의 기능은 살아있는 장애인들을 위하여, 생각만으로 외부의 장치를 제어할 수 있도록 하는 뇌-컴퓨터 인터페이스(BCI: Brain-Computer Interface) 기술을 연구하였다. 신경생리학 분야에서의 연구 결과에 의하면, 신체를 움직이는 상상을 할 경우, 뇌의 운동/감각 피질 영역에서는 $\beta$파(14-26 Hz)와 $\mu$파(8-12 Hz)가 억제/증가되는 ERD/ERS(Event-Related Desynchronization / Synchronization) 현상이 발생한다고 알려져 있다. 본 연구에서는 이를 기반으로 혀, 발, 왼손, 오른손의 동작 상상을 자극으로 이용하여 변화하는 뇌 신호 패턴을 실시간으로 분석하여 피험자의 생각을 읽을 수 있도록 하였으며, 상 하 좌 우의 네 방향으로 이동할 수 있도록 하는 마우스 제어 인터페이스를 구현하였다. 동작 상상 시 발생하는 뇌 신경 활동의 변화를 관측하기 위해서 뇌에 손상을 주지 않으면서도 높은 시간 해상도로 측정이 가능한 비침습적 뇌전도(EEG: ElectroEncephaloGraphy)를 이용하였다. 그러나 뇌전도 신호는 특성상 신호의 크기가 미약하고, 잡음의 영향을 많아 분석이 어렵다. 따라서 이를 극복하기 위해 통계적 방법을 기반으로 한 기계학습 기법인 CSP(Common Spatial Pattern)와 선형판별 분석(Linear Discriminant Analysis)을 이용하여 서로 다른 동작 상상에 의해 발생하는 뇌 신호들 간의 분산이 최대가 되도록 신호를 변환하여 인식 성능을 높일 수 있었다. 또한 분석된 뇌 신호의 시각화를 통해, 기존에 알려진 뇌의 해부학적, 신경생리학적 지식과 일치하는 ERD/ERS 현상이 발생하는 것을 확인할 수 있었다.

  • PDF

3자유도 암 로봇의 가상시뮬레이션과 실체궤적 (A Virtual Simulation and Real Trajectory of 3-DOF Arm Robot)

  • 문진수;김철우
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.300-305
    • /
    • 2007
  • This study developed a human robot master arm, which has a structure similar to the human arm, with the object of taking over human works. The robot arm was structured to reproduce human actions using three axes on each of the shoulder and the wrist based on mechanics, and the actuator of each axis adopted an ordinary DC motor. The servo system of the actuator is a one body type employing an amp for electric power, and it was designed to be small and lightweight for easy installation. We examined the posture control characteristics of the developed robot master arm in order to test its interlocking, continuous notions and reliability.

  • PDF

Nonlinear FES Control of Knee Joint by Inversely Compensated Feedback System

  • Eom Gwang-Moon;Lee Jae-Kwan;Kim Kyeong-Seop;Watanabe Takashi;Futami Ryoko
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.302-307
    • /
    • 2006
  • The aim of applying Functional Electrical Stimulation (FES) is to restore a person's motor function by directly supplying the controlled electrical currents to the site of the paralyzed muscles. However, most clinically utilized FES systems have adapted an open-loop control scheme. Recently the closed-loop control scheme has been considered for setting up the FES system, but due to the inherent nonlinearities in the musculoskeletal system, the nonlinearities were not fully compensated and it caused the oscillatory responses for tracking the output variables. In this study, a nonlinear controller model that has two inverse compensation units is proposed with the compromising feedback linearization method and this will eventually be used to design the FES control system for stimulating a knee joint musculoskeletal system.

모터와 브레이크의 동시구현에 기초한 다양한 햅틱효과의 제시 (Various Haptic Effects Based on Simultaneous Actuation of Motors and Brakes)

  • 권태범;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.602-608
    • /
    • 2005
  • In the virtual environment, force feedback to the human operator makes virtual experiences more realistic. To ensure the safe operation and enhance the haptic feeling, stability should be guaranteed. Both motors and brakes are commonly used for haptic devices. Motors can generate a torque in any direction, but they can make the system active during operation, thus leading to instability. Brakes can generate a torque only against their rotation, but they dissipate energy during operation, which makes the system intrinsically stable. Consequently, motors and brakes are complementing each other. In this research, a two degree-of-freedom (DOF) haptic device equipped with motors and brakes has been developed to provide better haptic effects. Each DOF is actuated by a pair of motor and brake. Modeling of the environment and the control method are needed to utilize both actuators. Among various haptic effects, contact with the virtual wall, representation of friction and representation of plastic deformation have been investigated extensively in this paper. It is shown that the hybrid haptic device is more suited to some applications than the motor-based haptic device.

퍼지속도보상기를 이용한 매입형 영구자석 동기전동기의 속도 센서리스 제어 (A Speed Sensorless Vector Control of Interior Permanent Magnet Synchronous Motors Using a Fuzzy Speed Compensator)

  • 김천규;김영조;이을재;최정수;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1114-1115
    • /
    • 2007
  • In this paper, a new speed sensorless control based on a fuzzy compensator are proposed for the interior permanent magnet synchronous motor (IPMSM) drives. The conventional proportional plus integrate(PI) control are very sensitive to step change of the command speed, parameter variations and load disturbance. To cope with these problems of the PI control, the estimated speeds are compensated by using the fuzzy logic controller (FLC). In the FLC used by the speed compensator of the IPMSM, the system control parameters are adjusted by the fuzzy rule based system, which is a logical model of the human behavior for process control. The effectiveness of algorithm is confirmed by the experiments.

  • PDF

환자와 로봇의 모델 불확도를 고려한 상지재활로봇의 채터링 없는 슬라이딩 모드 제어 (Chattering Free Sliding Mode Control of Upper-limb Rehabilitation Robot with Handling Subject and Model Uncertainties)

  • 압둘 마난 칸;윤덕원;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.421-426
    • /
    • 2015
  • Need to develop human body's posture supervised robots, gave the push to researchers to think over dexterous design of exoskeleton robots. It requires to develop quantitative techniques to assess human motor function and generate the command to assist in compliance with complex human motion. Upper limb rehabilitation robots, are one of those robots. These robots are used for the rehabilitation of patients having movement disorder due to spinal or brain injuries. One aspect that must be fulfilled by these robots, is to cope with uncertainties due to different patients, without significantly degrading the performance. In this paper, we propose chattering free sliding mode control technique for this purpose. This control technique is not only able to handle matched uncertainties due to different patients but also for unmatched as well. Using this technique, patients feel active assistance as they deviate from the desired trajectory. Proposed methodology is implemented on seven degrees of freedom (DOF) upper limb rehabilitation robot. In this robot, shoulder and elbow joints are powered by electric motors while rest of the joints are kept passive. Due to these active joints, robot is able to move in sagittal plane only while abduction and adduction motion in shoulder joint is kept passive. Exoskeleton performance is evaluated experimentally by a neurologically intact subjects while varying the mass properties. Results show effectiveness of proposed control methodology for the given scenario even having 20 % uncertain parameters in system modeling.

시청각 자극 및 인체 반응 계측 시스템 개발 (Development of System of the Visuo-Auditory Stimulation and Human Responses Measurement)

  • 유미;정선용;박용군;이상민;권대규;홍철운;김남균
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.535-538
    • /
    • 2005
  • The purpose of this work is to study a process organization on space cognition by visio-auditory stimulation. We develop the system of visuo-auditory stimulation and Humans responses measurement to observe the relationship between the sensory and the motor system fur the localization of visual and auditory target direction in the space. The experiments is performed in a soundproof chamber, 2163 red, green and yellow LED(Luminescent Diode, Brightness: $20cd/m^2$ 1 degree apart each other)arrayed in front of half-circle panel were used and 57 Speaker(5 degree apart each other) arrayed in the hidden of half-circle panel. Physiological parameters such as EOG (Electro-Oculography), head movement and their synergic control are measured by BIOPAC system and Optotrak Certus. This result shows that the response latency time of the perception motion in the center is laster than the periphery of panel. These results can be used in the study of characterizing the spatial cognition.

  • PDF

척수마비환자 재활훈련용 보행보조기의 인체진동을 고려한 무릎관절 시스템 진동제어(II) (Vibration Control of a Knee Joint System considering Human Vibration of the New R.G.O. for a Rehabilitation Trainning of Paraplegia (II))

  • 김명회;장대진;백윤수;박영필;박창일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.446-452
    • /
    • 2002
  • This paper Presents a 3-D design and a Vibration control of a new walking R.G.O.(Robotic Gait Orthosis) and would like to develop a simulation by this walking system. The vibration control and evaluation of the new knee joint mechanism on the biped walking R.G.O.(Robotic Gait Orthosis) was a very unique system and was to obtain by the 3-axis accelerometer with a low frequency vibration for the paraplegia It will be expect that the spinal cord injury patients are able to recover effectively by a biped walking R.G.O.. The new knee joint system of both legs were adopted with a good kinematic characteristics. It was designed attached a DC-srevo motor and controller, with a human wear type. It was able to accomodate itself to a environments of S.C.I. Patients. It will be expect that the spinal cord injury patients are able to recover effectively by a new walking R.G.O. system.

  • PDF

Effect of Visual and Somatosensory Information Inputs on Postural Sway in Patients With Stroke Using Tri-Axial Accelerometer Measurement

  • Chung, Jae-yeop
    • 한국전문물리치료학회지
    • /
    • 제23권1호
    • /
    • pp.87-93
    • /
    • 2016
  • Background: Posture balance control is the ability to maintain the body's center of gravity in the minimal postural sway state on a supportive surface. This ability is obtained through a complicated process of sensing the movements of the human body through sensory organs and then integrating the information into the central nervous system and reacting to the musculoskeletal system and the support action of the musculoskeletal system. Motor function, including coordination, motor, and vision, vestibular sense, and sensory function, including proprioception, should act in an integrated way. However, more than half of stroke patients have motor, sensory, cognitive, and emotional disorders for a long time. Motor and sensory disorders cause the greatest difficulty in postural control among stroke patients. Objects: The purpose of this study is to determine the effect of visual and somatosensory information on postural sway in stroke patients and carrying out a kinematic analysis using a tri-axial accelerometer and a quantitative assessment. Methods: Thirty-four subjects posed four stance condition was accepted various sensory information for counterbalance. This experiment referred to the computerized dynamic posturography assessments and was redesigned four condition blocking visual and somatosensory information. To measure the postural sway of the subjects' trunk, a wireless tri-axial accelerometer was used by signal vector magnitude value. Ony-way measure analysis of variance was performed among four condition. Results: There were significant differences when somatosensory information input blocked (p<.05). Conclusion: The sensory significantly affecting the balance ability of stroke patients is somatosensory, and the amount of actual movement of the trunk could be objectively compared and analyzed through quantitative figures using a tri-axial accelerometer for balance ability.