• Title/Summary/Keyword: Human Knee Joint

Search Result 118, Processing Time 0.028 seconds

An Analysis of Human Knee Joint Motion for Anterior Cruciate Ligament reconstruction (전십자 인대 재건을 위한 인체 슬관절의 굴신 운동 해석)

  • Moon, Byung-Young;Son, Kwon;Park, Jung-Hong;Suh, Jeung-Tak
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.929-934
    • /
    • 2003
  • Three dimensional joint motion data were obtained using precise magnetic sensors and X-ray. Six metal markers were inserted on the femur and the tibia to set the coordinate system. Two magnetic position sensors were used to record motion data and these positions were transformed into the knee motion. The quadriceps muscle was extended in an automatic manner by an extraction machine. Results of the knee motion were the same as the clinical data. The proposed method is found to be reasonable in describing the knee motion so that these motion data can be used to simulate the normal knee joint.

  • PDF

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.

Effects of Knee Joint Muscle Fatigue and Overweight on Shock Absorption during Single-Leg Landing of Adult Women (성인 여성의 외발 착지 동작 시 무릎관절 근육 피로와 과체중이 충격 흡수에 미치는 영향)

  • Kim, Tae-Hyeon;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • The purpose of this study was to investigate the effects of knee joint muscle fatigue and overweight on shock absorption during single-leg landing of adult women. Written informed consent forms, which were approved by the human subject research and review committee at Dong-A University, were provided to all subjects. The subjects who participated in this study were divided into 2 groups: a normal weight group and an overweight group, consisting of 15 young women each. Both the normal weight group and the overweight group showed that use soft landing and ankle dominant strategy. The peak vertical ground reaction force, the knee joint absorption power, and eccentric work done, as the increase of knee joint muscle fatigue level, showed a decrease. And the hip joint absorption power and eccentric work done, as the increase of weight, was less than the overweight group showed the normal weight group. In conclusion, the accumulation of the knee joint muscle fatigue and the increase of body weight may lead to an increased risk of injury during landing.

Knee-wearable Robot System Using EMG signals (근전도 신호를 이용한 무릎 착용 로봇시스템)

  • Cha, Kyung-Ho;Kang, Soo-Jung;Choi, Young-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.286-292
    • /
    • 2009
  • This paper proposes a knee-wearable robot system for assisting the muscle power of human knee by processing EMG (Electromyogram) signals. Although there are many muscles affecting the knee joint motion, the rectus femoris and biceps femoris among them play a core role in the extension and flexion motion, respectively, of the knee joint. The proposed knee-wearable robot system consists of three parts; the sensor for measuring and processing EMG signals, controller for estimating and applying the required knee torque, and actuator for driving the knee-wearable mechanism. Ultimately, we suggest the motion control method for knee-wearable robot system by processing the EMG signals of corresponding two muscles in this paper. Also, we show the effectiveness of the proposed knee-wearable robot system through the experimental results.

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

The Influence of Augmented Reality based Knee Exercise in Short Period on Range of Motion and Balance - Pilot study (증강현실 기반의 단기간 무릎운동이 관절가동범위와 균형에 미치는 영향 - 예비연구)

  • Im, JongHun;Yu, JaeHo
    • Archives of Orthopedic and Sports Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Purpose: This study investigated the effect of the augmented reality (AR)-based knee joint short period exercise program and used a motion analyzer with a 3D camera to determine the range of motion and dynamic balance and further investigate the effects of therapeutic exercise on patients. Methods: This study used AR-based motion analysis and a Y-balance test to measure the range of motion (ROM) of each joint: the hip joint and the knee joint. After the measurements, an exercise program was applied to the subjects, using the knee motion program function, and the muscles of the quadriceps femoris and the hamstring were stretched or strengthened. Results: Our results showed knee joint extension at the dominant hip joint flexion position. While there was no significant difference (p>.05) at this position, there were significant differences in the non-dominant hips, unbalanced knee joint flexion, and superior knee joint flexion (p<.05). The Y-balance test using the non-dominant leg supported by the dominant legs showed that the absolute reach was $69.70{\pm}7.06cm$ before the exercise, and the absolute reach after the exercise was $77.56{\pm}6.09cm$ (p<.05). Conclusions: There was a significant difference when the movement of the lower limbs supported the superior limbs, and a significant difference was found in the ROM when the non-dominant side supported the dominant side. Therefore, the AR-based exercise program improves the balance of the human body and the range of motion of the joints, and research that aims to improve patients abilities should continue.

Anatomy of the Anterior Cruciate Ligament (A Blueprint for Repair and Reconstruction) (전방십자인대의 해부학)

  • Jung, Young-Bok;Yum, Jae-Kwang
    • Journal of the Korean Arthroscopy Society
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • The anterior cruciate ligament(ACL) is, perhaps, the most intriguing component of the knee joint. Initially referred to crucial ligament because of the cruciate or crossed arrangement or the anterior and posterior ligaments within the knee. the irony or the ACL being crucial to the well-being or the joint has only recently appreciated. The anterior cruciate ligament of human knee joint is a complex structure and its orientation, construct and biology arc directly related to the knee function as a constraint of knee joint motion. In addition to its functional role as a static stabilizer or the knee. the ACL has a unique neurovascular system. The vascular anatomy of the ACL plays a crucial role in the repair and reconstruction of the ligament, and the neuroreceptors found in its substance suggest a possible proprioceptive role for the ligament. The structural complexity of the ACL allows the ligament to function through the normal range of motion as a static stabilizer or the knee. hut it also makes the exact duplication of this structure very difficult. A comprehensive knowledge or the anatomy of the ACL can provide the orthopedic surgeon with a blueprint for the idealized repair and reconstruction of this most complex structure.

  • PDF

Biomechanical Comprehension of Knee Joint (무릎 관절의 생역학적 이해)

  • Kwon Young-Shil;Lee Jin-Hee;Jung Byong-Ok;Bae Sung-Soo;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.167-177
    • /
    • 1999
  • Biomechanics is an important scientific foundation of physical therapy and is used to relate kinematics, kinetics, statics and dynamics for comprehencing human movement. The knee is well studied for demonstrating biomechanical analyses of joint because of its simplicity. The purposes of this study were 1)to provide categories and concepts of biomechanics, 2) to apply these concepts to knee movement involving daily living and gait, and 3) to review current and preceeding researches about biomechanics of knee. Thus, physical therapiestes in clinic may be helped understand of movement which includes considerations of description and production related force, moment and power.

  • PDF

Changes in Medial Knee Displacement and Lower Extremity Kinematics in Subjects with Dynamic Knee Valgus Following Application of Non-elastic Tape to the Hip Joint while Performing an Overhead Squat (오버헤드 스쿼트를 실시하는 동안 비탄력 테이핑의 엉덩관절 적용에 따른 동적 무릎 밖굽이가 있는 대상자의 무릎 내측 전위와 하지의 운동형상학의 변화)

  • Go-eun Choi;Jong-chul Jung;Dong-yun Bae;Won-young Park;Da-in An;Young-il Shin;Sung-hwa Go;Jun-seok Kim;Soo-Yong Kim
    • PNF and Movement
    • /
    • v.21 no.3
    • /
    • pp.337-344
    • /
    • 2023
  • Purpose: The purpose of this study was to evaluate changes in the lower extremity kinematics of subjects with dynamic knee valgus after we applied non-elastic tape while they performed overhead squat. Methods: Twenty-five subjects (12 females, 13 males) with dynamic knee valgus participated in this study. Hip and knee joint kinematics and medial knee displacement were measured during overhead squat with and without hip correction taping. Results: Hip joint internal rotation, knee valgus, and medial knee displacement were significantly lower during overhead squat with hip correction taping than without hip correction taping, but there was no significant difference in hip joint flexion and abduction. Conclusion: Hip joint correction using non-elastic taping is recommended to subjects with dynamic knee valgus to improve their lower extremity movement and alignment during overhead squat.

Design of an 1 DOF Assistive Knee Joint for a Gait Rehabilitation Robot (보행 재활 로봇 개발을 위한 1자유도 무릎 관절 설계)

  • Lee, Sanghyeop;Shin, Sung Yul;Lee, Jun Won;Kim, Changhwan
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.8-19
    • /
    • 2013
  • One of the important issues for structural and electrical specifications in developing a robot is to determine lengths of links and motor specifications, which need to be appropriate to the purpose of robot. These issues become more critical for a gait rehabilitation robot, since a patient wears the robot. Prior to developing an entire gait rehabilitation robot, designing of a 1DOF assistive knee joint of the robot is considered in this paper. Human gait motions were used to determine an allowable range of knee joint that was rotated with a linear type actuator (ball-screw type) and links. The lengths of each link were determined by using an optimization process, minimizing the stroke of actuator and the total energy (kinetic and potential energy). Kinetic analysis was performed in order to determine maximum rotational speed and maximum torque of the motor for tracking gait trajectory properly. The prototype of 1 DOF assistive knee joint was built and examined with a impedance controller.