• 제목/요약/키워드: Human Heat Load

검색결과 29건 처리시간 0.03초

건축외부공간에 있어서 인체의 일사열부하(日射熱負荷) 및 열적(熱的) 쾌적성(快適性)에 관한 실험적 연구 (Human Solar Heat Load and Thermal Comfort in an Outdoor Environment)

  • 정창원;윤인
    • 한국산업융합학회 논문집
    • /
    • 제1권2호
    • /
    • pp.65-74
    • /
    • 1998
  • The purpose of this paper is to investigate the mount of relief of human solar heat load and thermal comfort in outdoor environment in summer, Six different types of sites, T garden and its neighboring area in Japan, were selected as the experiment sites. The experiments were conducted from 22 to 29 August, 1994 to find the relationship between climatic conditions and human responses, Climatic conditions, subjects's thermal sensation and skin temperature were measured. Radiant heat exchange on the human body was estimated on the basis of the measured air and surface temperature and solar radiation. Thermal index Operative Temperature and New Effective Temperature was modified with the effect of the radiant heat exchange. Human thermal comfort and skin temperature is affected by the solar radiation and the sky factor in an outdoor environment. The effect of tree shade was verified on thermal comfort, The mount of relief of human solar heat load is relation to the existence of shade a solar radiation and the sky factor. The urban garden is one of the effective design element in an urban environmental planning.

  • PDF

통증 완화 치료기용 인체 부하 변동에 따른 피드백 제어가 가능한 고주파 회로 설계 (High Frequency Circuit Design using Feedback Control with Body Load Fluctuation for Pain Relief Therapy)

  • 박철원;원철희
    • 전기학회논문지P
    • /
    • 제62권1호
    • /
    • pp.45-49
    • /
    • 2013
  • High frequency system has been used for the purpose of skin care and obesity treatment, by high-frequency energy is applied to the human body generates deep heat. Conventional high frequency system could not selection control by depending on the body load fluctuations. Such as burns and side effects have been reported by system instability and then therapeutic effect is insufficient. During treatment, objective information about the status of the patient was no. Because of treatment methods are subjective, and so tailored treatments were impossible. In this paper, high frequency medical system with sinusoidal frequency characteristics without distortion of the Push pull switching scheme for pain relief therapy was designed. And control circuit that was designed by feedback using the output changes according to the body-load fluctuation. Last, power circuit for efficient control the heat generated from the hardware was proposed.

내부발열의 확률적 성상을 고려한 슬래브축냉의 최적제어 (A Study on Optimal Control of Slab Cooling Storage Considering Stochastic Properties of Internal Heat Generation)

  • 정재훈
    • 설비공학논문집
    • /
    • 제27권6호
    • /
    • pp.313-320
    • /
    • 2015
  • In this paper, a method to obtain the probability distribution of room temperature and cooling load is presented, when the internal heat generation is applied to the system as a disturbance in the air conditioning system with slab cooling storage. The probability distribution of room temperature and the cooling load due to the disturbance were examined in one room of an office building. When considering only the electric power consumption as a probability component, it was found that the effect on room temperature and cooling load is small, because the probability component of the measured electric power consumption in the building is small. On the other hand, when considering the stochastic fluctuations of electric power consumption together with the heat generated by human bodies, the mean value of the cooling load was about 2,300 W and the ratio of the standard deviations was 19% (10 o'clock in second day). It was revealed that the stochastic effects of internal heat generation acting on the air conditioning system with slab cooling storage are not small.

대학시설에 대한 열원기기 대수 운전 제어의 에너지 절약 효과 (The energy-saving effect by controlling the number of operating chillers in university facility)

  • 이제헌;야스노리아카시;금종수;김동규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1043-1048
    • /
    • 2009
  • This paper proposes the new operation control method that let heat source system stop and circulate only hot water at low load, and verified the introduction effect. At first, we constructed simulation model of heat source system and examined the proposing method by using simulation model. At last, we examined the introduction effect of proposing method with actual building. As a result, the primary energy consumption of heat source system was reduced by about 13%.

  • PDF

Study Characteristics in Packed Tower of Liquid Desiccant Solar Cooling System Using Counter Flow Configuration

  • Rahmanto, R. Hengki;Choi, K.H.;Agung, B.;Sukmaji, I.C.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.168-174
    • /
    • 2009
  • High water vapour content in air can cause a number of problems as for human or surrounding materials. For human a high water vapour can create physiological stress, discomfort, and also can encourage ill health. While, the cause for the environment is can accelerate the corrosion of metals, accelerate the growth of spores and mould, can reduce the electrical resistance of insulators and etc. Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling especially the latent load and also sensible load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed tower of liquid desiccant solar cooling system and the heat transfer and mass transfer will occur. This thesis is trying to study the characteristics inside the packed tower of dehumidifier systems. This characteristics consist of mass transfer rate, heat transfers rate, human comfort and energy that consume by the system. Those characteristics were affected by air flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems. The results of this thesis later on can be used to determine the best performance of the systems.

  • PDF

공학적인 지열시스템(EGS)을 이용한 지열발전 기술 (Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS))

  • 한정상;한혁상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

포항시의 집합 주거공간에 있어서 외장재 및 도로 구성재료가 인체 온열 쾌적성에 미치는 영향 (The Effect of the Materials of an Outer Wall and the Paved Street on Human Thermal Comfort in a Housing Complex in Pohang City)

  • 정창원;김경대;최영식
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.319-327
    • /
    • 2001
  • The objective of this study is to clarify the effect of thermal radiation environments on human thermal comfort, depending on different canyon types and surface materials on the human thermal comfort in a housing complex in Pohang city, Korea. For this purpose, the operative temperature and new effective temperature were calculated based on the modified mean radiant temperature of canyon models variated by the existence of direct radiation existence, surface materials, and the width and length of the street spaces in a housing complex. These indices for the canyon have been calculated from the meteorological data of Pohang city, which include air temperature, relative humidity, air velocity, global solar radiation and cloud. And the monthly averages of these climate factors measured at noon have been used. The results are as follows: (1) It is revealed that the short-wave radiosity reached the human body is affected by direct solar radiation and surface materials, and the long-wave radiosity by canyon types. (2) The existence of direct solar radiation, the kinds of surface materials and canyon types affect operative temperature($OT_n$) and new effective temperature($ET^*{_n}$). (3) The analysis of the human heat balance in the canyon indicates that the influence of radiation on human body is marc likely to be affected by the existence of direct solar radiation on human model.

  • PDF

Study on the Performances of Air Flow Fate Effect on a Structured Packed Tower at Adiabatic Condition in a Liquid Lithium Chloride Cooling System

  • Bakhtiar, Agung;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.404-408
    • /
    • 2009
  • The liquid desiccant air-conditioning system has been proposed as an alternative to the conventional vapor compression cooling systems to control air humidity. The complete system of liquid desiccant air-conditioning system is consisted two main components those are humidifier (regeneration) and dehumidifier. Humidifier part is connected to the load when summer season which is the air condition is hot and humid have to be turned into comfort condition on human. This paper purpose is performances study of air flow rate effect on a structured packed tower on cooling and dehumidifier system using liquid lithium chloride as the desiccant. Experimental apparatus used in this present study is consisted of three components those are load chamber, packed tower and chiller. Load chamber’s volume is $40m^3$, and packed tower dimension is cubic with length 0.4m occupied with packed column. Totally, 15 experimental has done using 5 times repeat on each variable of air velocity that varying on 2m/s, 3m/s and 4m/s with other conditions are controlled. Air inlet initial temperature and relative humidity are set respectively on $30^{\circ}C$ and 52%, desiccant flow rate is 0.63 kg/s, desiccant temperature is $10^{\circ}C$ and desiccant concentration is 0.4. The result of this study shows that averagely, the moisture removal rate and the heat transfer rate are influenced by the air velocity. Higher air velocity will increase the heat transfer and decreasing the moisture removal rate. At adiabatic condition the air velocity of 2 m/s respectively is having the higher moisture removal rate acceleration then the air velocity of 3m/s and 4 m/s until the steady state condition.

  • PDF

컨테이너 철도차륜의 안전성 평가에 관한 연구 (A Study on Safety Estimation of Railroad Wheel)

  • 이동우;김진남;조석수
    • 한국산학기술학회논문지
    • /
    • 제11권4호
    • /
    • pp.1178-1185
    • /
    • 2010
  • 철도차량의 고속화가 가속화되면서 화물을 운송하던 컨테이너 차량이 차륜의 파손에 의하여 탈선하는 사고가 발생하여 많은 물적 피해가 발생하고 있으며, 이러한 철도차량의 사고는 많은 인명 피해와 물적 피해를 가져오는 대형 사고로 발전할 수 있다. 따라서 이에 대한 재발 방지를 위한 차륜의 파손 해석에 대한 연구가 필요한 실정이다. 철도차량의 차륜은 기계적 하중과 열하중를 동시에 받으며, 기계적 하중으로는 철도차량의 무게에 의한 수직하중과 곡선 구간을 운행할 때 차륜과 레일의 접촉부에 수평하중이 발생하며, 철도차량의 제동시 답면제동에 의한 반복적인 열하중을 받는다. 이러한 차륜에 발생하는 기계적 하중과 열하중은 차륜의 균열과 잔류응력 등을 발생시키는 것으로 알려져 있다. 따라서, 본 연구에서는 차량 주행 시의 브레이크 이력과 하중 조건을 고려한 열 구조 연성해석을 수행하여 차륜에 부하되는 최대응력을 추정하였으며, 이 값을 파괴역학 파라미터인 응력확대계수에 적용하여 차륜의 안전성을 평가하였다.

적외선 열화상 분석을 통한 온실의 열손실 진단 및 평가 (Heat Loss Audit and Assessment of the Greenhouses Using Infrared Thermal Image Analysis)

  • 문종필;윤남규;이성현;김학주;이수장;김영화
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.67-73
    • /
    • 2010
  • Unlike Urban building, horticultural facilities has a lot of heat loss through plastic or glass covering material which could be much influential to growing plant and consuming energy for heating greenhouse. In many cases, heat loss from a break of cover, a gap of joint sealing, the entrance to greenhouse and windows for ventilation are the main factors considered in calculating the heating load for horticultural facilities. however the normal observation through human eye and digital camera could not recognize where the heat loss occurred. but the infrared thermal image camera with detecting thermal difference could be very effective for noticing heat loss by analyzing infrared thermal image. In this study, greenhouse structure, covering material, internal and external provisions for Horticultural facilities were surveyed in different sites and Infrared thermal camera shooting and image analysis were performed for auditing heat loss from cultivation facilities The results from this study were that unexpected heat loss had been noticed in 7 representative cases of greenhouse such as side wall covered with single or double plastic, and the joint of horizontal thermal curtain, roof without horizontal thermal curtain, entrance to greenhouse, windows for ventilation. the most important factors for keeping heat energy were whether the horizontal thermal curtain with multifold thermal material was installed or not. The internal or external covering using multifold thermal curtain proved to be the most effective ways to keep heat energy from losing through heat transmission, heat radiation. from inside to outside the horticultural facilities.