This paper suggests the evaluation sheet to ensure the objective and detailed information based on a classification table of PIF (Performance Influencing Factor). And this paper shows the results of HEP(Human Error Probability), using a quantitative method with the evaluated data as a result of estimating the likelihood of . human errors in the gas industry facility together with the evaluation sheet. Finally, these results are programmed to be operated in personal computer so that field workers an apply it in easy and convenient manner. The results of this study offer two key benefits; sharing reliable information on human errors with the Data Base and establishing a strategy to reduce human errors as well as to improve working proficiency.
Kim, Youngran;Jang, Seo-Il;Shin, Dongil;Kim, Tae-Ok;Park, Kyoshik
Journal of the Korean Institute of Gas
/
v.18
no.4
/
pp.68-75
/
2014
It is necessary to control and evaluate human factors to reduce economic loss by major accident in toxic gas facilities. Conventional works to evaluate hazards have been focused on mechanical and systematic failure, while only a little works have been studied on managing human errors. In this work, a classification system of performance shaping factor (PSF) was suggested to consist human error in managing accident in the toxic gas facilities. Four types of PSFs (human, system, task characteristics, and task environment) were collected, reviewed, and analyzed to be categorized selected according their characteristics of situational, task, and environmental parameters. The PSFs were further modified to set up PSF systems adequate to evaluate human error, and the proposed system to consist PSFs to evaluate human error was further studied through accident analysis in toxic gas facilities.
Journal of the Korean Society for Aviation and Aeronautics
/
v.25
no.4
/
pp.161-169
/
2017
The Human Factors Analysis and Classification System (HFACS) is a general human error framework originally developed and tested within the U.S. military as a tool for investigating and analyzing the human causes of aviation accidents. Based upon Reason's (1990) model of latent and active failures, HFACS addresses human error at all levels of the system, including the condition of aircrew and organizational factors. As a result, this study aims to examine the influence between the latent conditions based on HFACS. This study seeks to verify the factors of "Organizational Influence" effecting the "Precondition for Unsafe Acts" of HFACS. The results of empirical analysis demonstrated that the organizational influence had a positive influence on precondition for unsafe act, especially the "Organizational Climate" of organizational influence had even greater influence on precondition for unsafe acts.
The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room or improving the accuracy of chromosome classification. In this paper, We propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of multi-step multi-layer neural network(MMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted three morphological features parameters such as centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.). This Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other classification methods.
This paper consists largely of two parts: the first part introduces the revised railway human reliability analysis (R-HRA) method which is to be used under the railway risk assessment framework, and the second part presents the features of a computer software which was developed for aiding the R-HRA process. The revised R-HRA method supplements the original R-HRA method by providing a specific task analysis guideline and a classification of performance shaping factors (PSFs) to support a consistent analysis between analysts. The R-HRA software aids the analysts in gathering information for HRA, qualitative error prediction including identification of external error modes and internal error modes, quantification of human error probability, and reporting the overall analysis results. The revised R-HRA method and software are expected to support the analysts in an effective and efficient way in analysing human error potential in railway event or accident scenarios.
Proceedings of the Korean Nuclear Society Conference
/
1995.10a
/
pp.293-299
/
1995
A methodology is applied to identify tile learning trend related to the safety and availability of U.S. commercial nuclear power plants. The application is intended to aid in reducing likelihood of human errors. To assure that tile methodology ran be easily adapted to various types of classification schemes of operation data, a data bank classified by the Transient Analysis Classification and Evaluation(TRACE) scheme is selected for the methodology. The significance criteria for human-initiated events affecting tile systems and for events caused by human deficiencies were used. Clustering analysis was used to identify the learning trend in multi-dimensional histograms. A computer rode is developed based on tile K-Means algorithm and applied to find the learning period in which error rates are monotonously decreasing with plant age.
Rail human factors research has grown rapidly in both quantity and quality of output over the past few years. Human factors, also, still plays a significant part in many railway accidents. In this paper we review categorized performance shaping factors of human errors associated with railway accidents within and out of the country. This paper deals with the selection of the important performance shaping factors under accident management situations in railway for use in the assessment of human errors. The purpose of this study is to classify which human error would be selected for accident analysis. Therefore, the classification of human errors suggested in this study may be useful to enhance the Korean railway system safety.
We become an industry information society which is advanced to the altitude with the today. The information to be loading various goods each other together at a circumstance environment is increasing extremely. The restriction recognizes the data of many Quantity and it follows because the human deals the task to classify. The development of a mathematical formulation for solving a problem like this is often very difficult. But Artificial intelligent systems such as neural networks have been successfully applied to solving complex problems in the area of pattern recognition and classification. So, in this paper a neural network approach is used to recognize and classification problem was broken into two steps. The first step consist of using a neural network to recognize the existence of purpose pattern. The second step consist of a neural network to classify the kind of the first step pattern. The neural network leaning algorithm is to use error back-propagation algorithm and to find the weight and the bias of optimum. Finally two step simulation are presented showing the efficacy of using neural networks for purpose recognition and classification.
In the shipping industry, it is well known that around 80 % or more of all marine accidents are caused fully or at least in part by human error. In this regard, the International Maritime Organization (IMO) stated that the study of human factors would be important for improving maritime safety. Consequently, the IMO adopted the Casualty Investigation Code, including guidelines to assist investigators in the implementation of the Code, to prevent similar accidents occurring again in the future. In this paper, a process of the human factors investigation is proposed to provide investigators with a guide for determining the occurrence sequence of marine accidents, to identify and classify human error-inducing underlying factors, and to develop safety actions that can manage the risk of marine accidents. Also, an application of these investigation procedures to a collision accident is provided as a case study This is done to verify the applicability of the proposed human factors investigation procedures. The proposed human factors investigation process provides a systematic approach and consists of 3 steps: 'Step 1: collect data & determine occurrence sequence' using the SHEL model and the cognitive process model; 'Step 2: identify and classify underlying human factors' using the Maritime-Human Factor Analysis and Classification System (M-HFACS) model; and 'Step 3: develop safety actions,' using the causal chains. The case study shows that the proposed human factors investigation process is capable of identifying the underlying factors and indeveloping safety actions to prevent similar accidents from occurring.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.101-110
/
2022
Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.