• Title/Summary/Keyword: Human Colorectal Cancer

Search Result 296, Processing Time 0.025 seconds

Inhibitory Effect of Globefish Homogenate on the Growth of Caco-2 Human Colorectal Cancer Cells (복어 균질액의 Caco-2 인간 결장직장암세포 성장 억제 효과에 대한 연구)

  • Kim, Junghoon;Chung, Gujune;Kim, Jungho
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.212-217
    • /
    • 2017
  • Colorectal cancer is a leading cause of cancer mortality worldwide. Many studies show that most cases of human colorectal cancer arise from adenomatous polyps, which are usually dysplastic, nonmalignant precursor lesions; however, accumulation of multiple somatic mutations leads some to develop into advanced adenoma, which ultimately progresses to an invasive colorectal cancer. Notwithstanding the efforts made to improve chemotherapy, most colorectal cancers are unresponsive to this form of treatment, and malignant colorectal cancers remain incurable. To reduce the incidence of colorectal cancer mortality, further studies to improve colorectal cancer treatment are needed. Here, we show that Globefish homogenate suppresses the growth of Caco-2 human colorectal cancer cells, and that the homogenate inhibits Caco-2 cell proliferation in a dose-dependent manner. These data suggest that Globefish homogenate may suppress colorectal cancer development.

Activating Transcription Factor 3 is a Molecular Target for Apoptotic Effect of Silymarin in Human Colorectal Cancer Cells

  • Eo, Hyun Ji;Park, Gwang Hun;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.29 no.3
    • /
    • pp.281-288
    • /
    • 2016
  • Apoptosis has been regarded as a therapeutic target because apoptosis is typically disturbed in human cancer. Silymarin found in the seeds of the milk thistle (Silybum marianum) has been reported to exert anti-cancer properties through apoptosis. This study was performed to investigate the molecular target for silymarin-mediated apoptosis in human colorectal cancer cells. Silymarin reduced the cell viability and induced an apoptosis in human colorectal cancer cells. ATF3 overexpression increased PARP cleavage by silymarin. Increased ATF3 expression in both protein and mRNA was observed in silymarin-treated cells. In addition, silymarin increased the luciferase activity of ATF3 promoter. Inhibition of JNK and IκK-α blocked silymarin-mediated ATF3 expression. The results suggest that silymarin induces apoptosis through JNK and IκKα-dependent ATF3 expression in human colorectal cancer cells.

Reversine induces cell cycle arrest and apoptosis via upregulation of the Fas and DR5 signaling pathways in human colorectal cancer cells

  • YOUNG-LAN PARK;SANG-YOON HA;SUN-YOUNG PARK;JUNG-HO CHOI;MIN-WOO JUNG;DAE-SEONG MYUNG;HYUN-SOO KIM;YOUNG-EUN JOO
    • International Journal of Oncology
    • /
    • v.54 no.5
    • /
    • pp.1875-1883
    • /
    • 2019
  • Reversine, a 2,6-diamino-substituted purine analogue, has been reported to be effective in tumor suppression via induction of cell growth arrest and apoptosis of cancer cells. However, it remains unclear whether reversine exerts anticancer effects on human colorectal cancer cells. In the present study, in vitro experiments were conducted to investigate the anticancer properties of reversine in human colorectal cancer cells. The effect of reversine on human colorectal cancer cell lines, SW480 and HCT-116, was examined using a WST-1 cell viability assay, fluorescence microscopy, flow cytometry, DNA fragmentation, small interfering RNA (siRNA) and western blotting. Reversine treatment demonstrated cytotoxic activity in human colorectal cancer cells. It also induced apoptosis by activating poly(ADP-ribose) polymerase, caspase-3, -7 and -8, and increasing the levels of the pro-apoptotic protein second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI. The pan-caspase inhibitor Z-VAD-FMK attenuated these reversine-induced apoptotic effects on human colorectal cancer cells. Additionally, reversine treatment induced cell cycle arrest in the subG1 and G2/M phases via increase in levels of p21, p27 and p57, and decrease in cyclin D1 levels. The expression of Fas and death receptor 5 (DR5) signaling proteins in SW480 and HCT116 cells was upregulated by reversine treatment. Reversine-induced apoptosis and cell cycle arrest were suppressed by inhibition of Fas and DR5 expression via siRNA. In conclusion, Reversine treatment suppressed tumor progression by the inhibition of cell proliferation, induction of cell cycle arrest and induction of apoptosis via upregulation of the Fas and DR5 signaling pathways in human colorectal cancer cells. The present study indicated that reversine may be used as a novel anticancer agent in human colorectal cancer.

Anticancer Activity of Sageretia theezans in Human Colorectal Cancer Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.108-108
    • /
    • 2018
  • In this study, we evaluated the anti-cancer effect of extracts of leaves (ST-L) and branches (ST-B) from Sageretia theezans in human colorectal cancer cells. ST-L and ST-B significantly inhibited the proliferation of human colorectal cancer cells, SW480. ST-L and ST-B decreased cyclin D1 protein level through the induction of cyclin D1 proteasomal degradation via $GSK3{\beta}$-dependent threonine-286 phosphorylation of cyclin D1. In addition, ST-L and ST-B increased HO-1 protein through p38, ROS and $GSK3{\beta}$-dependent Nrf2 activation. These findings suggest that ST-L and ST-B may have great potential for the development of anti-cancer drug to treat human colorectal cancer.

  • PDF

Kahweol from Coffee Induces Apoptosis by Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Song, Hun Min;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.337-343
    • /
    • 2017
  • Kahweol as a coffee-specific diterpene has been reported to induce apoptosis in human cancer cells. Although some molecular targets for kahweol-mediated apoptosis have been elucidated, the further mechanism for apoptotic effect of kahweol is not known. Activating transcription factor 3 (ATF3) has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which kahweol stimulates ATF3 expression and apoptosis in human colorectal cancer cells. Kahweol increased apoptosis in human colorectal cancer cells. It also increased ATF3 expression through the transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by kahweol was CREB located between -147 to -85 of ATF3 promoter. ATF3 overexpression increased kahweol-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by kahweol. Inhibition of ERK1/2 and $GSK3{\beta}$ blocked kahweol-mediated ATF3 expression. The results suggest that kahweol induces apoptosis through ATF3-mediated pathway in human colorectal cancer cells.

Detection of Human Cytomegalovirus in patients with Colorectal Cancer by Nested-PCR

  • Tafvizi, Farzaneh;Fard, Zahra Tahmasebi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1453-1457
    • /
    • 2014
  • Background: The association of colorectal cancer with human cytomegalovirus (HCMV) is a controversial issue in cancer research. This study aimed to identify the HCMV virus in colorectal cancer tissues and to investigate the association of HCMV with colorectal cancer. In this study, 50 cancer tissue samples and 50 samples without colon cancer were studied in order to identify the HCMV virus through nested-polymerase chain reaction. The virus was identified in 15 cases of colorectal cancer tissues (15/50) and in 5 cases of normal tissues (5/50). Eight cases of adenocarcinoma tissues were in a moderately differentiated stage, and 7 cases had well-differentiated stage tissues that were positive for viral DNA. The findings were statistically evaluated at a significance level of p<0.05. The HCMV virus could playa role in creating malignancy and the progress of cancer through the process of oncomodulation.

Apoptosis of Colorectal Cancer UTC116 Cells Induced by Cantharidinate

  • Liu, Bin;Gao, Hai-Cheng;Xu, Jing-Wei;Cao, Hong;Fang, Xue-Dong;Gao, Hai-Mei;Qiao, Shi-Xing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3705-3708
    • /
    • 2012
  • Effects of Cantharidinate on apoptosis of human colorectal cancer UTC-116 cells were investigated by means of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, H and E staining, flow cytometry, and Raman Spectra analysis. The results showed Cantharidinate to exert inhibitory action on proliferation of human colorectal cancer UTC-116 cells, inducing apoptosis, arresting cells in G1 phase, with decline of S and G2 phases. In addition, the results of Raman spectrum showed significant changes in the UTC-116 cells chemical structure with stretching after the application of Cantharidinate. Taken together, these results suggest that the treatment of human colorectal cancer with Cantharidinate may be associated with multiple molecular mechanisms for apoptosis. Furthermore, similar to fluorouracil, Cantharidinate should be considered as novel assistant drug for controlling the growth of human colorectal cancer UTC-116 cells.

Anticancer Activity of the Safflower Seeds (Carthamus tinctorius L.) through Inducing Cyclin D1 Proteasomal Degradation in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Hong, Se Chul;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.29 no.3
    • /
    • pp.297-304
    • /
    • 2016
  • The seed of safflower (Carthamus tinctorius L) has been reported to suppress human cancer cell proliferation. However, the mechanisms by which safflower seed inhibits cancer cell proliferation have remained nuclear. In this study, the inhibitory effect of the safflower seed (SS) on the proliferation of human colorectal cancer cells and the potential mechanism of action were examined. SS inhibited markedly the proliferation of human colorectal cancer cells (HCT116, SW480, LoVo and HT-29). In addition, SS suppressed the proliferation of human breast cancer cells (MDA-MB-231 and MCF-7). SS treatment decreased cyclin D1 protein level in human colorectal cancer cells and breast cancer cells. But, SS-mediated downregulated mRNA level of cyclin D1 was not observed. Inhibition of proteasomal degradation by MG132 attenuated cyclin D1 downregulation by SS and the half-life of cyclin D1 was decreased in SS-treated cells. In addition, SS increased cyclin D1 phosphorylation at threonine-286 and a point mutation of threonine-286 to alanine attenuated SS-mediated cyclin D1 degradation. Inhibition of ERK1/2 by PD98059 suppressed cyclin D1 phosphorylation and downregulation of cyclin D1 by SS. In conclusion, SS has anti-proliferative activity by inducing cyclin D1 proteasomal degradation through ERK1/2-dependent threonine-286 phosphorylation of cyclin D1. These findings suggest that possibly its extract could be used for treating colorectal cancer.

The Aetiological Role of Human Papillomavirus in Colorectal Carcinoma: An Iranian Population- Based Case Control Study

  • Ranjbar, Reza;Saberfar, Esmaiel;Shamsaie, Alireza;Ghasemian, Ehsan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1521-1525
    • /
    • 2014
  • Background: Human papillomavirus (HPV) is one of the most common sexually transmitted infections worldwide and the association between HPV infection and genital cancers has been well established. This study concerned the possible role of HPV infection in colorectal carcinoma (CRC) in the Iranian population. Materials and Methods: We examined 80 tissues obtained from patients with colorectal cancer consisting of 58 colon cancer samples and 22 rectal cancer samples and 80 tissues from patients with unremarkable pathologic changes as matched controls by sex, study center and anatomical sites. HPV infection and genotypes were detected using nested PCR and sequencing methods, respectively. Results: HPV DNA was detected in 5/80 (6.25%) cases including 1 of 22 (4.54%) patients with rectum cancer and 4 of 58 (6.9%) patients with colon cancer and 1/80 (1.25%) of controls. Furthermore, HPV-18 was detected as the most frequent type and we found no significant correlation between prevalence of HPV infection and anatomical sub- sites. Conclusions: Although a causal relation between human papillomavirus and colorectal cancer was not found through this study, analysis of medical records pointed to a possible role for high- risk types of HPV in increasing the potential of aggressiveness in colorectal cancer. This study shows a particular frequency of HPV genotypes in patients with colorectal cancer in Iran. Since HPV vaccines are limited to a few types of virus, using cohort studies in different geographical zones to screen for patterns of HPV infection in different organs might increase the efficacy and optimization of the current vaccines.

Screening Peptides Binding Specifically to Colorectal Cancer Cells from a Phage Random Peptide Library

  • Wang, Jun-Jiang;Liu, Ying;Zheng, Yang;Liao, Kang-Xiong;Lin, Feng;Wu, Cheng-Tang;Cai, Guan-Fu;Yao, Xue-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.377-381
    • /
    • 2012
  • The aim of this study was to screen for polypeptides binding specifically to LoVo human colorectal cancer cells using a phage-displayed peptide library as a targeting vector for colorectal cancer therapy. Human normal colorectal mucous epithelial cells were applied as absorber cells for subtraction biopanning with a c7c phage display peptide library. Positive phage clones were identified by enzyme-linked immunosorbent assay and immunofluorescence detection; amino acid sequences were deduced by DNA sequencing. After 3 rounds of screening, 5 of 20 phage clones screened positive, showing specific binding to LoVo cells and a conserved RPM motif. Specific peptides against colorectal cancer cells could be obtained from a phage display peptide library and may be used as potential vectors for targeting therapy for colorectal cancer.