• Title/Summary/Keyword: Human Body Tracking

Search Result 95, Processing Time 0.024 seconds

Design and Implementation of Motion-based Interaction in AR Game (증강현실 게임에서의 동작 기반 상호작용 설계 및 구현)

  • Park, Jong-Seung;Jeon, Young-Jun
    • Journal of Korea Game Society
    • /
    • v.9 no.5
    • /
    • pp.105-115
    • /
    • 2009
  • This article proposes a design and implementation methodology of a gesture-based interface for augmented reality games. The topic of gesture-based augmented reality games is a promising area in the immersive future games using human body motions. However, due to the instability of the current motion recognition technologies, most previous development processes have introduced many ad hoc methods to handle the shortcomings and, hence, the game architectures have become highly irregular and inefficient This article proposes an efficient development methodology for gesture-based augmented reality games through prototyping a table tennis game with a gesture interface. We also verify the applicability of the prototyping mechanism by implementing and demonstrating the augmented reality table tennis game. In the experiments, the implemented prototype has stably tracked real rackets to allow fast movements and interactions without delay.

  • PDF

Head Detection based on Foreground Pixel Histogram Analysis (전경픽셀 히스토그램 분석 기반의 머리영역 검출 기법)

  • Choi, Yoo-Joo;Son, Hyang-Kyoung;Park, Jung-Min;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.179-186
    • /
    • 2009
  • In this paper, we propose a head detection method based on vertical and horizontal pixel histogram analysis in order to overcome drawbacks of the previous head detection approach using Haar-like feature-based face detection. In the proposed method, we create the vertical and horizontal foreground pixel histogram images from the background subtraction image, which represent the number of foreground pixels in the same vertical or horizontal position. Then we extract feature points of a head region by applying Harris corner detection method to the foreground pixel histogram images and by analyzing corner points. The proposal method shows robust head detection results even in the face image covering forelock by hairs or the back view image in which the previous approaches cannot detect the head regions.

Localizing Head and Shoulder Line Using Statistical Learning (통계학적 학습을 이용한 머리와 어깨선의 위치 찾기)

  • Kwon, Mu-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.141-149
    • /
    • 2007
  • Associating the shoulder line with head location of the human body is useful in verifying, localizing and tracking persons in an image. Since the head line and the shoulder line, what we call ${\Omega}$-shape, move together in a consistent way within a limited range of deformation, we can build a statistical shape model using Active Shape Model (ASM). However, when the conventional ASM is applied to ${\Omega}$-shape fitting, it is very sensitive to background edges and clutter because it relies only on the local edge or gradient. Even though appearance is a good alternative feature for matching the target object to image, it is difficult to learn the appearance of the ${\Omega}$-shape because of the significant difference between people's skin, hair and clothes, and because appearance does not remain the same throughout the entire video. Therefore, instead of teaming appearance or updating appearance as it changes, we model the discriminative appearance where each pixel is classified into head, torso and background classes, and update the classifier to obtain the appropriate discriminative appearance in the current frame. Accordingly, we make use of two features in fitting ${\Omega}$-shape, edge gradient which is used for localization, and discriminative appearance which contributes to stability of the tracker. The simulation results show that the proposed method is very robust to pose change, occlusion, and illumination change in tracking the head and shoulder line of people. Another advantage is that the proposed method operates in real time.

Evaluating Joint Motion Sensing Efficiency According to the Implementation Method of CNT-Based Fabric Sensors (CNT 기반의 직물센서 구현 방법에 따른 관절동작 센싱 효율 평가)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.129-138
    • /
    • 2021
  • This study aimed to determine the effects of the shape and attachment position of stretchable textile sensors coated with carbon nanotube on their performance when used to measure children's joint movements. Moreover, the child-safe requirements for fabric motion sensors are established. The child participants were advised to wear integrated clothing equipped with the sensors of various shapes (rectangular and boat-shaped) and attachment positions (at the knee and elbow joints or 4 cm below the joints). The voltage change induced by the elongation and contraction of the fabric sensors was determined for arm and leg flexion-extension motions at 60 deg/s (three measurements of 10 repeats each for 60°and 90°angles, for a total of 60 repetitions). Their dependability was determined by comparing the fabric motion sensors to the associated acceleration sensors. The experimental results indicate that the rectangular-shaped sensor affixed 4 cm below the joint is the most effective fabric motion sensor for measuring children's arm and leg motions. In this study, we designed a textile sensor capable of tracking children's joint motion and analyzed the sensor shape and attachment position on motion sensing clothing. We demonstrated that flexible fabric sensors integrated into garments may be used to detect the joint motions of the human body.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.