• Title/Summary/Keyword: Human Body Impact

Search Result 211, Processing Time 0.028 seconds

Essential Functions Required by Patients and Physical Therapists in the Rehabilitation Process of Stroke Patients: A Survey Study (뇌졸중 환자의 재활 과정에서 환자와 물리치료사가 요구하는 기능에 대한 조사연구)

  • Jung-Byung Chae;Ju-Hyeon Jung
    • PNF and Movement
    • /
    • v.22 no.2
    • /
    • pp.289-303
    • /
    • 2024
  • Purpose: In this study, 100 stroke patients and 205 physical therapists were surveyed to determine the essential functions needed in the rehabilitation process of stroke patients. Methods: This study involved 100 stroke patients and 205 physical therapists. Sixteen functions suggested in the previous study as necessary in the rehabilitation process of stroke patients were selected, and a revised questionnaire was prepared and distributed to several institutions. A frequency analysis of the collected data was conducted to aggregate the functions required in rehabilitation, and a scoring process was used to determine their ranking among the 16 functions. Results: The functions required in the rehabilitation process, as selected by stroke patients, were ranked as follows: walking, toileting, eating, using products and technology for communication, and washing oneself. The functions required in the rehabilitation process, as selected by physical therapists, were ranked as follows: muscle power functions, maintaining body position, muscle tone functions, attention functions, and walking. Conclusion: The results of the study confirm the importance of an agreed goal between the stroke patient and the therapist regarding the functions required for the rehabilitation. This understanding plays a significant role in achieving the patient's expectations and the therapist's predicted performance, thereby providing reassurance and confidence in the impact of the research.

Biomechanical Analysis of the Elderly Gait with a Walking Assistive Device (노인의 보행보조기구 사용 보행시 보행패턴의 변화연구)

  • Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • Walking is not only an essential component of the human mobility, but also is a good exercise. Inability to walk freely can reduce an individual's quality of life and independence substantially. Being a relatively low impact activity, walking is particularly good for the elderly and research has shown that regular walking in the elderly reduces the chance of fall-related injuries and mental diseases as well. In spite of the documented benefits of regular walking, it is still difficult to walk without the aid of assistive devices for the frail elderly who have lower extremity problems. Assistive walking devices(AWD), such as crutches, canes, hiking-poles, T-Poles and walkers, are often prescribed to the elderly to make their walking be safe and efficient. Many researchers have demonstrated the effects of AWDs such as reducing lower extremity loading, improved dynamic/gait stability, yet, no study has been done for gait pattern when the elderly gait with AWDs. Therefore, the purpose of this study was to examine whether T-Poles, one of the AWDs, change the elderly gait pattern. Eight community-dwelling female elderly participated in this study. Laboratory kinematics during walking with T-Poles(PW) and with out T-Poles(NPW) was assessed. PW showed significant increase in step width, stride length, gait velocity and decrease in swing time. No significances were found in lower body joint angles but meaningful trend and pattern were found. Maybe the reason was due to the participants. Our participants were healthy enough so that the effect of T-Poles was minimum. PW also showed typical gait phases which are no single support phase during a gait cycle. It indicates that walking with T-Poles may guarantee safe and confident walking to the frail elderly.

A Study on the Development of the Understanding that the Cause of Warm Pathogen Lies in Upper Portion of Body ("온사상수(溫邪上受)" 개념의 형성요인에 대한 고찰)

  • Eun, Seokmin
    • Journal of Korean Medical classics
    • /
    • v.30 no.2
    • /
    • pp.11-29
    • /
    • 2017
  • Objectives : Contemporary researches suspect that, contrary to the past belief, the understanding that the cause of warm pathogen lies in the upper portion of human body is an understanding that had been well-established even before Yetianshi. This new understanding now requires us to contemplate the process of theoretical development which this understanding, termed Onsasangsu, had taken within the boundary of the theory of warm pathogen. This paper aims to shed light on this within the framework that this is the emergence of a new theory of warm pathogen caused by a new understanding of warm pathogen. Methods : First, the theories of warm pathogen as developed by historical doctors were studied, and elements that seem to be related to the understanding of Onsasangsu were selected and studied to understand their theoretical characteristics. Furthermore, the paper studied what academic significance do these theories have on the development of the theory of warm pathogen. Results & Conclusions : Provided that the underlying assumption of Onsasangsu is that febrile diseases are caused through moutn and nose, the study showed that this understanding arose before the period of Qing Dynsasty from the need by many doctors to differentiate the pathogens of various diseases such as the disease of heat, febrile disease, and epidemic. The reason that these discussions could not have much impact on the study of febrile disease during the Qing Dynasty could be because they were not passed on down to the future generations, or because commonly held perspective was unable to accept criticisms.

The treatment effect of novel hGHRH homodimer to male infertility hamster

  • Zhang, Xu-Dong;Guo, Xiao-Yuan;Tang, Jing-Xuan;Yue, Lin-Na;Zhang, Juan-Hui;Liu, Tao;Dong, Yu-Xia;Tang, Song-Shan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.637-647
    • /
    • 2018
  • Extra-hypothalamic growth hormone-releasing hormone (GHRH) plays an important role in reproduction. To study the treatment effect of Grin (a novel hGHRH homodimer), the infertility models of 85 male Chinese hamsters were established by intraperitoneally injecting 20 mg/kg of cyclophosphamide once in a week for 5 weeks and the treatment with Grin or human menopausal gonadotropin (hMG) as positive control was evaluated by performing a 3-week mating experiment. 2-8 mg/kg of Grin and 200 U/kg of hMG showed similar effect and different pathological characteristics. Compared to the single cyclophosphamide group (0%), the pregnancy rates (H-, M-, L-Grin 26.7, 30.8, 31.3%, and hMG 31.3%) showed significant difference, but there was no difference between the hMG and Grin groups. The single cyclophosphamide group presented loose tubules with pathologic vacuoles and significant TUNEL positive cells. Grin induced less weight of body or testis, compactly aligned tubules with little intra-lumens, whereas hMG caused more weight of body or testis, enlarging tubules with annular clearance. Grin presented a dose-dependent manner or cell differentiation-dependentincrease in testicular GHRH receptor, and did not impact the levels of blood and testicular GH, testosterone. Grin promotes fertility by proliferating and differentiating primitive cells through up-regulating testicular GHRH receptor without triggering GH secretion, which might solve the etiology of oligoasthenozoospermia.

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

Preliminary Study of the Effects of CO2 on the Survival and Gowth of Olive Flounder (Paralichthys olivaceus) Juveniles

  • Hwang, In-Joon;Park, Mun-Chang;Baek, Hea-Ja
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.350-353
    • /
    • 2009
  • As a result of human industrial development, carbon dioxide ($CO_2$) is currently accumulating in the atmosphere and dissolving into the oceans. Sequestration into the deep sea has been proposed as a possible solution to this increasing atmospheric $CO_2$, although the impact of such a program on marine ecosystems is unknown. We examined the effects of increased $CO_2$ levels on the growth of the olive flounder, Paralichthys olivaceus. Juvenile olive flounder 40 days post hatching were exposed to two levels of $CO_2$ (3.60-7.55 and 4.05-11.46 kPa) in running seawater for 26 days. During the exposure period, the pH and $CO_2$ levels of the water were measured, and the numbers of dead individuals were counted in each aquarium. Following the exposure period, the total lengths (mm) and body weights (mg) of the juvenile fish were measured. Both $CO_2$ treatments significantly increased fish mortality compared to controls ($19.87\pm4.53%$ vs. 7.14% and $75.96\pm1.36%$ vs. 7.14% for high and low doses, respectively). After the high $CO_2$ treatment, total length ($14.98\pm6.58$ mm vs. $19.52\pm1.83$ mm) and body weight ($28.92\pm13.85$ mg vs. $67.35\pm18.32$ mg) of the exposed flounder were reduced compared to the control fish; however, no significant differences in these values were observed after the low $CO_2$ dose. These results suggested that $CO_2$ exposure inhibits growth in the juvenile stage and that $CO_2$-enriched seawater is toxic in the early life stages of olive flounder.

Impact of High Fat Diet-induced Obesity on the Plasma Levels of Monoamine Neurotransmitters in C57BL/6 Mice

  • Kim, Minjeong;Bae, SeungJin;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.476-480
    • /
    • 2013
  • Obesity is one of the most serious health problems in developed countries. It negatively affects diverse aspects of human wellbeing. Of these, a relationship between obesity and depression is widely recognized but biomarkers for assessment of obesity-associated mood changes in animal obesity models are rarely known. Here we explored the link between obesity and the plasma levels of monoamine neurotransmitters involved in mood control using a sensitive UPLC/MSMS technique in high fat diet (HFD)-induced obesity model in male C57BL/6 mice to explore the potential utility of plasma tests for obesity-associated mood change. HFD (60% of total calories, 8 weeks) induced significantly higher weight gains in body (+37.8%) and fat tissue (+306%) in male C57BL/6 mice. Bioanalysis of serotonin, dopamine and norepinephrine in plasma at 8 weeks of HFD revealed that serotonin decreased significantly in the obese mice when compared to normal diet-fed mice ($2.7{\pm}0.6$ vs $4.3{\pm}2.0ng/ml$, N=8). Notably, a negative correlation was found between the levels of serotonin and body weight gains. Furthermore, principal component analysis (PCA) with the individual levels of neurotransmitters revealed that plasma levels of dopamine and serotonin could apparently differentiate the obese mice from lean ones. Our study demonstrated that blood plasma levels of neurotransmitters can be employed to evaluate the mood changes associated with obesity and more importantly, provided an important clue for understanding of the relationship between obesity and mood disorders.

The Biomechanical Analysis of a One-Legged Jump in Traditional Korean Dance According to Breathing Method (호흡 방법에 따른 한국무용 외발뛰기 동작의 운동역학적 분석)

  • An, Ju-Yeun;Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • Objective : The purpose of this study was to conduct a biomechanical analysis of a one-legged jump in a traditional Korean dance (Wae Bal Ddwigi) according to breathing method. Method : Participants for this study were 10 dancers with experience for at least 10 years in traditional Korean dance. Independent variables for this test were two different types of breathing methods. Dependent variables were ground reaction force and lower extremity kinematic variables. The jumping movement was divided into three separate stages, take off, flight, and landing. The subjects were asked a questionnaire regarding the degree of impact force and stability of landing posture after the experiment. The Kistler Force Plate (9281B, Switzerland) was used to measure ground reaction force. A digital camera was used to look into angles of each joint of the lower part of body. SPSS was used for statistical analysis via the dependent t-test(p<.05). Results : There were significant differences in jumping according to breathing method. The inhalation & exhalation method yielded significantly longer flight times combined with greater ground reaction force. The breath-holding method required more core flexion during landing, increasing movement at the hips and shoulders. Conclusion : Consequently, there was more flexion at the knee to compensate for this movement. As a result, landing time was significantly higher for breath-holding.

Effect of Zn Content on the Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.159-159
    • /
    • 2017
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements are known to play an important role in the bone formation and also affect bone mineral characteristics. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing TiO2(Zn-TiO2)coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, effect of Zn content on the corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation were studied by SEM, EDS, XRD, AC impedance, and potentiodynamic polarization test. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67 mV/s and potential range from -1500 mV to +2000 mV. Also, AC impedance was performed at frequencies ranging from 10 MHz to 100 kHz for corrosion resistance.

  • PDF

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF