• Title/Summary/Keyword: Human Behavior Simulation

Search Result 135, Processing Time 0.02 seconds

Learning for Environment and Behavior Pattern Using Recurrent Modular Neural Network Based on Estimated Emotion (감정평가에 기반한 환경과 행동패턴 학습을 위한 궤환 모듈라 네트워크)

  • Kim, Seong-Joo;Choi, Woo-Kyung;Kim, Yong-Min;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • Rational sense is affected by emotion. If we add the factor of estimated emotion by environment information into robots, we may get more intelligent and human-friendly robots. However, various sensory information and pattern classification are prescribed for robots to learn emotion so that the networks are suitable for the necessity of robots. Neural network has superior ability to extract character of system but neural network has defect of temporal cross talk and local minimum convergence. To solve the defects, many kinds of modular neural networks have been proposed because they divide a complex problem into simple several subproblems. The modular neural network, introduced by Jacobs and Jordan, shows an excellent ability of recomposition and recombination of complex work. On the other hand, the recurrent network acquires state representations and representations of state make the recurrent neural network suitable for diverse applications such as nonlinear prediction and modeling. In this paper, we applied recurrent network for the expert network in the modular neural network structure to learn data pattern based on emotional assessment. To show the performance of the proposed network, simulation of learning the environment and behavior pattern is proceeded with the real time implementation. The given problem is very complex and has too many cases to learn. The result will show the performance and good ability of the proposed network and will be compared with the result of other method, general modular neural network.

Plume Behavior Study of Green FLP-106 ADN Thruster Using DSMC Method (직접모사법을 이용한 친환경 FLP-106 ADN 추력기의 배기가스 거동 연구)

  • Kuk, Jung Won;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.649-657
    • /
    • 2019
  • Hydrazine, which is used as a representative monopropellant, is an extremely poisonous substance and has a disadvantage that it is harmful to the human body and is very difficult to handle. In recent years, research on the development of non-toxic and environmentally friendly propellants has attracted much attention. Ammonium dinitramide(ADN) based propellant developed by Swedish Space Corporation has superior performance to hydrazine and has been commercialized through performance verification in space environment. On the other hand, the exhaust gas from a thruster nozzle collides with a satellite while it is spreading in the vacuum space, thermal load and surface contamination may occur and may reduce the performance and lifetime of the satellite. However, a study on the effect of the exhaust gas of the green propellant thruster on the satellite has not been conducted in earnest yet. Therefore, the exhaust gas behavior in space was analyzed in this study for the ADN based green monopropellant using Navier-Stokes equations and the DSMC method. As a result, it can be expected to be used as design validation data in the development of satellite when using the ADN based green monopropellant.

Daily Water Intake and Exposure Parameters Related to the Multi-route Exposure in Drinking Water (음용수의 섭취량 및 다경로 노출평가를 위한 노출변수 조사연구)

  • Chung, Yong;Shin, Dong-Chun;Park, Seong-Eun;Choi, Shi-Nai;Park, Seon-Mee
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.19-29
    • /
    • 1996
  • Human exposure to volatile compounds in tap water can occur from inhalation and dermal absorption as well as direct ingestion. The relative contribution to total human exposure from these pathways has been considered to be important especially for VOC's (volatile organic compounds). In an attempt to reduce the uncertainty of the risk assessment, it has been suggested that the exposure assessment process could be significantly improved by adopting Monte-Carlo simulation. However, there is no actual data in Korea for each exposure parameter to determine the level of exposure, and the distributional pattern. Therefore, we surveyed water use patterns and behavior related to multi-route exposure to VOC's in household tap water in Korea, and compared these values to the those in western countries. In the first survey, we calculated daily water intake using data from a sample of 1322 persons of several cities in Korea. In the second survey, we obtained questionnaire data on exposure time for showering, bathing and household activities, and tap water intake from 851households in Korea. In the last survey, we measured the exposure parameters (exposure time, water use rate etc.) related to showers, baths, toilets, dish washing, washing and cooking, and tap water intake was surveyed. Also, the subjects were measured their body weight, height and tidal volume, etc. A diary, a flow meter and a measuring cup were used to measure these values as precisely as possible. Average daily water intake was ranged 0.79-1.71 L/day for adults in three surveys. Tap water intake measured by log-sheet during one week in third survey was 1.26 (average), 1.98 L/day (90 percentlie), respectively. These results were comparable with results from EPA (1.4, 2L/day). The average amount of water used by housewives in the third survey was 515.0 $\pm$ 564.6L/day. In usual activity, the amount of water used in the bathroom, the laundry and the kitchen was 140.0 $\pm$ 538.9, 148.0 $\pm$ 174.5, 229.3 $\pm$ 205.4 L/day, respectively. Exposure parameters such as water intake rate, exposure duration, body weight, inhalation rates in surveyed data of Korean people differed from those published from western countries. This could be attributed to variations in lifestyle, dietary habits and physiological characteristics.

  • PDF

Analysis of Evacuation Route Selection Pattern of Occupant according to Installation Type of Exit Light and Opening/Closing Direction of Door (유도등 설치유형 및 피난구 출입문 개폐방향에 따른 재실자의 피난경로 선택패턴분석)

  • Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.28-34
    • /
    • 2019
  • The purpose of this study is to examine the influence of occupant's path selection on the shape of the pictogram and the opening/closing of the door. This study was carried out through a simulation experiment using computer virtual reality. Exit light pictogram for exit door and exit light pictogram for passage were arranged for each scenario in type T corridor and type + corridor. The computer graphic was used to carry out the simulation. In addition, we analyzed the response of human behavior according to the two directions (left and right) of exit light pictogram for exit door and the effect of opening direction of doorway. In addition, the change of decision-making according to the presence or absence of exit light pictogram for passage was confirmed. The results of the direction selection response were as follows. First, in the case of the T-shaped corridor, if the exit light was not installed on the door, it was influenced by the opening direction of the door. Second, when the exit light is attached to the door, the selectivity in the direction that matches the exit light pictogram direction is high. As a result, it was confirmed that the pictogram direction of the exit light influenced the evacuation route selection of the occupants.

DESIGN OF AIR SEAT CUSHION ORTHOSIS FOR PLEGIA

  • Hong, Jung-Hwa;Kim, Gyoo-Suk;Kim, Jong-Kwon;Mun, Mu-Seong;Ryu, Jei-Cheong;Lee, In-Huk;Lee, Jong-Keun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.121-123
    • /
    • 2002
  • The design of an air seat cushion for preventing decubitus ulcer includes many design factors such as the even distribution of interface pressure, the minimization of mean and peak interface pressure values, and the reduction of interface shear force and pressure gradient. It involves the anatomic condition of plegia's buttock as well as air pressure in air cells of cushion. As a result, a suitable design of the cushion satisfying the all requirements is a difficult problem. Therefore, an appropriate and effective numerical tool to develop an air cushion orthosis is required. The purpose of the present study was to develop an air seat cushion orthosis having optimized air cells for evenly distributed interface pressure between the buttock and cushion surface. For the purpose, an advanced finite element (FE) model for the design of air cushion was developed. Since the interface pressure and shear force behavior, as well as stress analyses were primary concern, a FE air cell model was developed and verified by the experiments. Then, the interactions of two cells were checked. Also, the human part of the developed numerical model includes every material property and geometry related to buttock and femoral parts. For construction of dimension data of buttock and femoral parts, CT scans were performed. A commercial FE program was employed for the simulation representing the seating process on the orthosis. Then, sensitive analyses were performed with varying design parameters. A set of optimal design parameters was found satisfying the design criteria of the orthosis. The results were utilized to produce a prototype of the orthosis. Experimentally, the buttock interface pressure distributions from the optimized and previous ones were compared. The new seat orthosis showed a significantly improved interface pressure characteristics compared to the most popular one in the market. The new orthosis will be used for the development of the AI(artificial intelligent) controlled seat orthosis fur prevention of decubitus ulcer fur various plegic patients and the elderly.

  • PDF