• Title/Summary/Keyword: Hull motions

Search Result 99, Processing Time 0.019 seconds

Strength Assessment of LNG CCS using Strength Analysis Method for Composite Materials (직교이방성 복합재료의 극저온 재료 물성치를 고려한 LNG CCS의 강도 평가에 관한 연구)

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.114-121
    • /
    • 2014
  • Liquefied natural gas(LNG) cargo containment system(CCS) has the primary function of ensuring both adequate structural safety with respect to sloshing load which is defined as a violent behaviour of the liquid contents in CCS due to external forced motions and thermal insulation keeping natural gas below its boiling point. Among different LNG CCS types such as independent B-type and membrane ones, Mark III CCS is considered in this paper to perform its strength assessment. Mark III CCS plate is designed and constructed by stacking various non-metallic engineering materials such as plywood, triplex, reinforced PU foam that are supported by series of mastic upon inner steel hull structure. From the viewpoint of structural analysis, this plated structure is treated as a laminated composite structure showing complex structural behaviour under external load. Advanced finite element models of Mark III CCS plate is generated and used in conjunction with ultimate strength based failure criteria from laminated composite mechanics for the strength assessment. The strength assessment is performed within the initial failure state of Mark III CCS plate. Results provide failure details such as failure locations and loads. Finally obtained results are reviewed using the loads from acceptance criteria suggested by classification.

Design and Evaluations of Underwater Hydrophone with Self Noise Suppressing Structures -Part Ⅰ. Noise Transfer Characteristics & Effects of Structure Modifications - (저 잡음 수중 청음기의 설계 방안 연구 -Ⅰ. 잡음 전달 특성 및 구조 변경 영향 -)

  • Im, Jong-In;Roh, Young-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.10-15
    • /
    • 1997
  • The hydrophones is mounted in many applications on a vibrating surface and functions as an underwater acoustic signal receiver without sensing the vibrations from the mounting surface. However, their performance is usually degraded by the interference of exterior noises such as acoustic cavitation in water stream, host structural vibration in the hull, and propeller motions. This paper describes the design and evaluation of a self noise suppressing hydrophones which shows very poor sensitivity to the external noises, first, effects of the external noise on the its receiver performance is simulated with finite element method(FEM). Second, the geometrical variations are implemented on the original structure that include additional air pockets and acoustic walls which work as acoustic shied or scatter of the noises. The results show that the effect of the external noise is the most significant when it is applied near to the bottom of the side wall of the hydrophones. The transverse noise induced by the outside water flow is isolated most effectively when a thin compliant (damping) layer combined with two air pockets is inserted to the circumference of the nose. Noise level is reduced about fifty nine percent of that of the original structure.

  • PDF

Design of a Pendulum-type Anti-rolling System for USSV and Verification Based on Roll Damping Coefficient (무인반잠수정의 진자식 횡동요 저감 장치 설계 및 감쇠계수 기반 검증)

  • Jin, Woo-Seok;Kim, Yong-Ho;Jung, Jun-Ho;Lee, Kwangkook;Kim, Dong-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.550-558
    • /
    • 2019
  • The roll motion of a general vessel, which is more influenced by resonance as compared to other motions, adversely affects the passenger and hull. Therefore, reducing the roll motion through an anti-rolling system is critical, and most ships use various devices such as anti-rolling tanks, bilge keels, and fin stabilizers to accomplish this. In this study, a simplified model is developed for the application of an anti-rolling device for unmanned semi-submersible vessels. The applied anti-rolling device is installed on the stern and stem of a ship using a pair of servo motors with added weight, and the motor is controlled through the Arduino. The moment of the motor is designed and implemented based on a mathematical model such that it is calculated through the restoring force according to the heel angle of the ship. The performance of the proposed system was verified by utilizing the roll damping coefficient calculated by the free-roll decay test and logarithmic decrement method and was validated by a towing tank test. The system is expected to be used for unmanned vessels to perform sustainable missions.

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.

A Study on the Characteristics of Motion Response of Stern Trawlers in Following Seas (선미식 트롤선의 추파중 선체동요특성에 관한 연구)

  • Kang, Il-Kwon;Park, Byung-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.226-233
    • /
    • 2002
  • In the field of research of sea keeping quality, much development has been made in recent years using the method of calculation based on the strip theory. It is very important to investigate the hull response of a fishing vessel in waves to ensure the safe navigation and fishing operation in rough seas by preserving excellent sea keeping qualities. For this purpose, the author measured various responses of three fishing vessels in waves using real sea experimental measuring system and analyzed the experimental data The results obtained can be summarized as follow. 1. The amplitudes of pitching motion in the experiments appeared low values with more than one peak occasionally in following sea and quartering sea, and the band width of those was found to be wide relatively. 2. The amplitudes of rolling motion in the experiments appeared high values with only one peak in following sea and quartering sea regardless of ship's tonnage, and the band width of those was found to be narrow relatively. 3. The comparisions of theoretical results with those of experiments for the pitching motions and rolling motion in following sea and quartering sea show that the theoretical values are higher slightly than those of experiments in both directions and the period at which the peak appears in the calculations and the experiments has good agreement approximately 4. The calculated responses of two vessels under a assumed wave of 2.2m height and 5.0sec period showed that the response of pitching motion of ship-A are 2.2 times bigger than those of ship-C in following sea and quartering sea, and the response of rolling motion of ship-A is 4.2 times bigger than that of ship-C in quartering sea.

Dynamic analysis of slack moored spar platform with 5 MW wind turbine

  • Seebai, T.;Sundaravadivelu, R.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.285-296
    • /
    • 2011
  • Spar platforms have several advantages for deploying wind turbines in offshore for depth beyond 120 m. The merit of spar platform is large range of topside payloads, favourable motions compared to other floating structures and minimum hull/deck interface. The main objective of this paper is to present the response analysis of the slack moored spar platform supporting 5MW wind turbine with bottom keel plates in regular and random waves, studied experimentally and numerically. A 1:100 scale model of the spar with sparD, sparCD and sparSD configuration was studied in the wave basin ($30{\times}30{\times}3m$) in Ocean engineering department in IIT Madras. In present study the effect of wind loading, blade dynamics and control, and tower elasticity are not considered. This paper presents the details of the studies carried out on a 16 m diameter and 100 m long spar buoy supporting a 90 m tall 5 MW wind turbine with 3600 kN weight of Nacelle and Rotor and 3500 kN weight of tower. The weight of the ballast and the draft of the spar are adjusted in such a way to keep the centre of gravity below the centre of buoyancy. The mooring lines are divided into four groups, each of which has four lines. The studies were carried out in regular and random waves. The operational significant wave height of 2.5 m and 10 s wave period and survival significant wave height of 6 m and 18 s wave period in 300 m water depth are considered. The wind speed corresponding to the operational wave height is about 22 knots and this wind speed is considered to be operating wind speed for turbines. The heave and surge accelerations at the top of spar platform were measured and are used for calculating the response. The geometric modeling of spar was carried out using Multisurf and this was directly exported to WAMIT for subsequent hydrodynamic and mooring system analysis. The numerical results were compared with experimental results and the comparison was found to be good. Parametric study was carried out to find out the effect of shape, size and spacing of keel plate and from the results obtained from present work ,it is recommended to use circular keel plate instead of square plate.

Longitudinal Motion Analysis in Multi-Directional Irregular Waves for a Training Ship using Commercial Code (상용코드를 이용한 다방향 불규칙파중 실습선의 종운동해석)

  • Han, Seung-Jae;Kim, In-Cheol;Oh, Dea-Kyun;Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • This study gives the vertical motion analysis in multi-directional irregular waves using a commercial code(MAXSURF v.16) based on linear strip theory for a training ship. To verify the commercial code prior to the analysis, we guarantees the reliability of this paper's results using the commercial code by comparing with the results(Flokstra, 1974) of same hull and experimental conditions on a Panamax container. The analysis conditions are Beaufort wind scale No. 5($\bar{T}=5.46$, $H_{1/3}=2m$) based on ITTC wave spectrum, encounter angle Head & bow seas($150^{\circ}$) and Froude number Fn=0.257. Finally, we calculates heave RAO, pitch RAO and obtains the result of ship's response spectra for heave and pitch motions. In the motion response spectrum under the multi-directional irregular waves, heave motion reacts slightly high in short-crested waves and pitch motion reacts high in long-crested waves.

A Study on Motion Response of Small Fishing Vessels According to Various Tonnage in Regular Waves (소형어선의 크기에 따른 규칙파 중 운동응답 특성에 관한 연구)

  • Im, Nam-Kyun;Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.832-838
    • /
    • 2021
  • Recently, reports of marine accidents of small fishing vessels less than 10 tons have been increasing. In this study, the characteristics of the motion response in regular waves were analyzed using computations for these ships. Small vessels less than 10 tons are classified by size and used for marine accident investigations. Therefore, the motion response analysis was performed on three small fishing vessels of different sizes. In the case of the head sea, it was confirmed that as the speed of the vessel increased in the long wavelength region, the motion responses of heave and pitch became large. The motion response of the smallest 3-ton fishing vessel was greater than that of the other sizes of fishing vessels. The maximum value of the roll motion shifted to the long wavelength region as the speed gradually increased in the bow sea, regardless of the size of the ship. In all the three small fishing vessels, it was found that the roll motion was the greatest at 15 knots, the highest speed in both bow and beam seas. When sailing in the head sea and bow sea conditions, lowering the speed is one of the effective approaches to reduce the effects of the vertical and lateral plane motions. The roll motion caused by the beam wave showed a tendency to increase rapidly only at a specific wavelength regardless of the speed and the size of the vessel. It was confirmed that the roll motion was significantly reduced with forward speed in the stern wave compared to the bow wave. As there is a specific region where the maximum value of the hull motion response appears depending on the size and speed of the ship, an operation method that can minimize the effect of this motion should be considered and implemented.

A Study on the Distance Error Correction of Maritime Object Detection System (해상물체탐지시스템 거리오차 보정에 관한 연구)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2023
  • Maritime object detection systems, which detects small maritime obstacles such as fish farm buoys and visualizes distance and direction, is equipped with a 3-axis gimbal to compensate for errors caused by hull motion, but there is a limit to distance error corrections necessitated by the vertical movement of the camera and the maritime object due to wave motions. Therefore, in this study, the distance error of maritime object detection systems caused by the movement of the water surface according to the external environment is analyzed and corrected using average filter and moving average filter. Random numbers following a Gaussian standard normal distribution were added to or subtracted from the image coordinates to reproduce the rise or fall of the buoy under irregular waves. The distance calculated according to the change of image coordinates, the predicted distance through the average filter and the moving average filter, and the actual distance measured by laser distance meter were compared. In phases 1 and 2, the error rate increased to a maximum of 98.5% due to the changes of image coordinates due to irregular waves, but the error rate decreased to 16.3% with the moving average filter. This error correction capability was better than with the average filter, but there was a limit due to failure to respond to the distance change. Therefore, it is considered that use of the moving average filter to correct the distance error of the maritime object detection system will enhance responses to the real-time distance change and greatly improve the error rate.