• Title/Summary/Keyword: Hull Resistance

Search Result 445, Processing Time 0.021 seconds

Comparative Study on Resistance Performance of Icebreaking Cargo Vessel according to Hull Form Variation by using Synthetic Ice and Refrigerated Ice (합성얼음과 냉동얼음을 이용한 선형을 변화시킨 쇄빙상선의 저항특성 연구)

  • Lee, Seung-Ho;Kim, Moon-Chan;Chun, Ho-Hwan;Shin, Byung-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.350-358
    • /
    • 2010
  • The present paper deals with the comparative study of resistance performance with refrigerated ice and synthetic ice according to the variation of hull form characteristics. The resistance test has been conducted in pack ice condition in each concentration condition. Stem angle has been chosen as main parameters for the variation of hull form characteristics. The correlation of performance between with the refrigerated ice and with the synthetic ice has been shown according to the variation for stem angles. The present study show the possibility of ice test in general towing tank with synthetic ice for the time-consuming research such as hull form optimization although that is confined in pack ice condition. The more parametric study for the properties of synthetic ice is expected to be conducted to have more close correspondence for the test results of refrigerated ice in near future.

Hull Form Design of 46 Feet Motor Yacht (46피트급 모터요트의 선형설계)

  • Shin, Sung-Chul;Kim, Hwon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.455-461
    • /
    • 2008
  • This article describes a part of collaborative research between industry and academy to develop an initial hull form of 46 feet motor yacht. Hydrodynamic performances such as stability, resistance and seaworthiness were estimated after completing the procedure of hull form design in the initial design stage.

Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails

  • Seo, Jeonghwa;Choi, Hak-Kyu;Jeong, Uh-Cheul;Lee, Dong Kun;Rhee, Shin Hyung;Jung, Chul-Min;Yoo, Jaehoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.442-455
    • /
    • 2016
  • The resistance and seakeeping performance of a high-speed monohull vessel were investigated through a series of model tests in a towing tank. The hull had a slender wave-piercing bow, round bilge, and small deadrise angle on stern. Tests on the bare hull in calm water were first conducted and tests on spray rails followed. The spray rails were designed to control the flow direction and induce a hydrodynamic lift force on the hull bottom to reduce trim angle and increase rise of the hull. The maximum trim of the bare hull was $4.65^{\circ}$ at the designed speed, but the spray rails at optimum location reduced trim by $0.97^{\circ}$. The ship motion in head seas was examined after the calm water tests. Attaching the rails on the optimum location effectively reduced the pitch and heave motion responses. The vertical acceleration at the fore perpendicular reduced by 11.3%. The effective power in full scale was extrapolated from the model test results and it was revealed that the spray rails did not have any negative effects on the resistance performance of the hull, while they effectively stabilized the vessel in calm water and waves.

A Practical Hull Form Optimization Method Using the Parametric Modification Function (파라메트릭 변환함수를 이용한 선형최적화의 실용화에 관한 연구)

  • Kim, Hee-Jung;Choi, Hee-Jong;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.542-550
    • /
    • 2007
  • A geometry modification is one of main keys in achieving a successful optimization. The optimized hull form generated from the geometry modification should be a realistic, faired form from the ship manufacturing point of view. This paper presents a practical hull optimization procedure using a parametric modification function. In the parametric modification function method, the initial ship geometry was easily deformed according to the variations of design parameters. For example, bulbous bow can be modified with several parameters such as bulb area, bulb length, bulb height etc. Design parameters are considered as design variables to modify hull form, which can reduce the number of design variables in optimization process and hence reduce its time cost. To verify the use of the parametric modification function, optimization for KCS was performed at its design speed (FN=0.26) and the wave making resistance is calculated using a well proven potential code with fully nonlinear free surface conditions. The design variables used are key design parameters such as Cp curve, section shape and bulb shape. This study shows that the hull form optimized by the parametric modification function brings 7.6% reduction in wave making resistance. In addition, for verification and comparison purpose, a direct geometry variation method using a bell-shape modification function is used. It is shown that the optimal hull form generated by the bell-shaped modification function is very similar to that produced by the parametric modification function. However, the total running time of the parametric optimization is six times shorter than that of the bell shape modification method, showing the effectiveness and practicalness from a designer point of view in ship yards.

A Study on the Hull Form Design and Ice Resistance & Propulsion Performance of a Platform Support Vessel (PSV) Operated in the Arctic Ocean (극지해역 운용 해양작업지원선(PSV)의 선형설계와 빙 저항추진 성능 연구)

  • Yum, Jong-Gil;Kang, Kuk-Jin;Jang, Jin-ho;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.497-504
    • /
    • 2018
  • Platform Support Vessels operated in the Arctic Ocean support diverse operations of offshore plant in the sea, and the PSV is also needed to support works to exploit the oil and gas in the Arctic Ocean. Both of the ice breaking and the open sea performance have been considered together to secure the enhanced operational performance at the harsh environment in the Arctic Ocean and the open sea as well. In this study, One of the design requirements of a PSV is to guarantee continuous icebreaking performance with 3 knots at 1 m thickness of level ice, where the design draft is 7.5m and the engine power is 13 MW. Three hull forms were designed, and the ice resistance based on empirical formulas was estimated to select the initial hull form having an outstanding performance. The full scale performance of the designed hull forms was predicted by the ice model test conducted in the ice model basin of Korea Research Institute of Ships & Ocean Engineering(KRISO). The analysed results show that the selected hull form satisfies the above design requirement.

Study on Resistance Performance of Icebreaking Cargo Vessel in Pack Ice Condition according to Variation of Synthetic Ice Thickness and Hull Form Characteristics (합성얼음의 두께변화와 선형변화에 따른 Pack ice 상태에서의 쇄빙상선의 저항특성 연구)

  • Lee, Seung-Ho;Kim, Moon-Chan;Chun, Ho-Hwan;Cho, Jun-Cheol;Shin, Byung-Chul;Jung, Un-Hwa
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.471-478
    • /
    • 2009
  • The present paper deals with characteristics of resistance performance according to the variation of synthetic ice thickness and hull form. The resistance test has been conducted with pack ice condition in Pusan National University towing tank. Stem angle has been chosen as main parameters for the variation of hull form characteristics, which is the most important factor especially in icebreaking cargo vessel. The serial comparisons of resistance test have been done with the variation of hull form parameter as well as with the different thickness of synthetic ice. The different trend of resistance performances with increasing of stem angle has been shown at each synthetic ice thickness. The present test results is expected to be confirmed by comparing the test results in ice tank in the near future.

Remodeling of tuna purse seiner for improving fishing performance (조업성능 향상을 위한 선망선 개선)

  • Hong, Jin-Keun;Kang, Il-Kwon;Jeong, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.4
    • /
    • pp.435-442
    • /
    • 2011
  • In an attempt to respond to the increase in international oil prices and reduce operating expenses, ship remodeling was carried out on a 740ton class tuna purse seiner. To strengthen the competitiveness of the fisheries industry by improving vessel performance, a bulbous bow was newly equipped. The slipway and rudder area were also lengthened and enlarged with the propeller and main engine remained unchanged. To reduce the hull resistance, a circle type bulbous bow was attached on the hull behind bow thruster and thus the cost for exchanging electrical equipment for bow thruster was reduced. The new rudder area was expanded 15% more than the old one within the extent that the existing mechanical control part and rudder stock were not changed. To prevent fishing net damage and stabilize wake field, slipway was lengthened to the optimal position. All of the new design of remodeling parts went through the model tests in towing tank and CWC. Besides resistance test, all of necessary model test results were delivered for hydrodynamic character for the modified ship. The maneuvering simulation to verify that the remodeled ship satisfies the IMO rules was performed in both zigzag and turning tests. The estimated resistance with new bulbous bow and lengthened stern was reduced by 4.8% in the 2-dimensional analysis and 17.4% in the 3-dimensional analysis in comparison of conventional ship. The average reduction of resistance was estimated about 10%. Maneuvering character of modified hull form was found to satisfy all regulations under IMO. The remodeling of tuna purse seiner can not only improve fishing performance but also contribute to reduction of operating cost by saving energy for the fisheries industry.

A Study on the Resistance Performance of the Goose Neck Bulbous Bow by Numerical Simulation Method (수치시뮬레이션기법을 이용한 거위목 벌브의 저항성능에 관한 연구)

  • Yu, Jin-Won;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.689-696
    • /
    • 2010
  • Bulbous bow is one of the important design factors on the design of fore-body hull form. Using the interference technique of ship waves, the bulbous bow can decrease the wave resistance of ship. Recently, the goose neck bulb is applied mainly for high speed vessels like passenger ships and ferries etc.. Also, the goose neck bulb is applied for relatively high speed merchant vessels like container ships and LNG carriers. However, existing research papers about the goose neck bulb are not enough as reference data for the design of bow hull form. In this study, numerical calculations are carried out to investigate the bow wave characteristics of a high speed ferry with a normal high nose bulb or a goose neck bulb. By comparing the pressure distributions on the hull surface and the wave systems near the bow, the features of wave resistance reduction are discussed. Also, Numerical calculations were carried out for a series of goose neck bulbs to figure out the optimum bulb size. The maximum reduction rate of pressure resistance for the fore-body is achievable up to 8% by adopting the goose neck bulb in the present calculation.

A Study on the Scale Effect and Improvement of Resistance Performance Based on Running Attitude Control of Small High-Speed Vessel (소형 고속선박의 항주자세 제어에 따른 저항성능 개선 및 축척 효과에 관한 연구)

  • Lee, Jonghyeon;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.538-549
    • /
    • 2021
  • In this study, a trim tab on the stern hull of a small high-speed vessel of approximately 10 m length sailing at a Froude number of 1.0 was designed for energy efficiency. The running attitude and resistance performance of the bare hull and trim tab hull at several angles to the base line were analyzed for model and full scale ships using computational fluid dynamics, and compared to investigate the scale effect. The analysis results for the bare hull were quite similar, but a difference in the attitude control under same conditions of the trim tab was observed, resulting in the total resistance error. However, there was no significant difference in tendency of the variation in the resistance with the attitude. Thus, the optimum running attitude could be determined from the tendency despite the scale effect, but a full scale analysis is required to analyze the control of the attitude by the trim tab and flow characteristics near the full scale ship.

A Study on Hull Form Development of Polyethylene Boat (폴리에틸렌 보트의 선형 개발에 관한 연구)

  • Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4726-4732
    • /
    • 2013
  • The Domestic boat has been manufactured by hull form of typical foreign boat. In this study, design environment for polyethylene boat is analysed to create new hull form of the boat and design elements are extracted from existing boats and consumer preferences. Key elements in polyethylene boat design are three words "semi-classic, urban and sporty". Hull resistance and engine power for new developed boat can be expected by Orca 3D program. This result indicates that engine power of the boat is much less than that of commercial boat.