• 제목/요약/키워드: Hue 정보

검색결과 178건 처리시간 0.027초

Hue/Saturation 영상의 적응적 선택을 이용한 강인한 Mean-Shift Tracking (Robust Mean-Shift Tracking Using Adoptive Selection of Hue/Saturation)

  • 박한동;오정수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.579-582
    • /
    • 2015
  • Mean-Shift 알고리즘은 객체 모델과 객체 후보 영상에서 색상 히스토그램 분포의 유사도를 이용하여 객체를 추적하는 강인한 알고리즘이다. 그러나 색상정보를 이용한 Mean-Shift 알고리즘은 객체와 배경이 비슷한 색상 분포를 가질 경우에 추적에 실패할 수 있는 단점이 있다. 이러한 단점을 보완하기 위해 배경과 객체를 분리할 정보를 색상(hue)과 채도(saturation) 영상에서 각각 4비트의 bit-plane을 조합한 새로운 영상을 사용한 강인한 객체 추적 알고리즘을 구현한다.

  • PDF

칼라맵 인텍스와 Hue 정보를 이용한 칼라 영상 분할 (Color Image Segmentation Using Color-map Index and Hue)

  • 유창연;곽내정;김영길;안재형
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.472-475
    • /
    • 2003
  • 본 논문에서는 칼라맵 인덱스와 Hue 정보를 이용하여 반복적 병합을 통해 분할하는 칼라 영상 분할 방법을 제안하였다. 먼저 영상을 벡터 양자화 한 후 양자화 칼라맵 인덱스를 이용해 초기 영역을 설정한다. 초기 영역으로 선택된 영역들은 Hue 정보를 이용하여 영역을 병합하였고 그 후 미소영역을 병합하였다. 이때 반복처리로 인해 수행시간이 많이 소요되는 것을 개선하기 위해 Hue 정보를 이용한 영역 병합 처리에서 두 개의 테이블을 이용하여 속도를 개선하였다. 후처리에서는 과분할된 영역을 제거하기 위해 RGB 칼라 성분의 유클리디언 거리를 이용하여 주변유사 영역에 병합하였다. 제안 방법은 다수의 칼라 영상에 적용하여 좋은 분할 결과와 빠른 처리속도를 보여주었다.

  • PDF

컬러 영상으로부터 Hue,Tint 색상 정보의 상관관계를 이용한 얼굴 검출 (Face Detection in Color Images Using the Correlation between Hue and Tint)

  • 김정기;민경필;전준철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.715-718
    • /
    • 2004
  • 본 논문에서는 컬러 영상으로부터 얼굴을 검출하는 방법으로서, RGB 색상 공간을 Hue와 Tint 정보로 분리하여 자동으로 검출하는 방법을 제시한다. 다양한 색상 공간으로의 변환은 얼굴 검출에 필요한 보다 정확한 정보를 만들어낼 수 있다. 피부 색상에 대해 Hue와 Tint 색상 정보가 직선 형태의 분포를 이루는 특징을 이용하도록 한다. 색상 및 조명의 변화에 영향을 덜 받는 두 색상 값으로부터 직선 방정식을 생성하여 입력 데이터와의 비교를 통해 얼굴 영역을 검출한다. 실험을 통해 본 논문에서 제시한 방법이 보다 빠르고 정확한 결과를 보여줌을 증명한다.

  • PDF

The identity distinction of the moving objects using distance among hue normalization levels

  • Shin, Chang-hoon;Kim, Yun-ho;Lee, Joo-shin
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.591-594
    • /
    • 2004
  • In this paper, The identity distinction of the moving objects using distance among hue normalization levels was proposed. Moving objects are detected by using difference image method and integral projection method to background image and objects image only with hue area. Hue information of the detected moving area are normalized by 24 levels from 0$^{\circ}$ to 360$^{\circ}$. A distance in between normalized levels with a hue distribution chart of the normalized moving objects is used for the identity distinction feature parameters of the moving objects. To examine proposed method in this paper, image of moving cars are obtained by setting up three cameras at different places every 1 km on outer motorway. The simulation results of identity distinction show that it is possible to distinct the identity a distance in between normalization levels of a hue distribution chart without background.

  • PDF

Hue 채널 영상의 다중 클래스 결합을 이용한 객체 기반 영상 분류 (Object-based Image Classification by Integrating Multiple Classes in Hue Channel Images)

  • 예철수
    • 대한원격탐사학회지
    • /
    • 제37권6_3호
    • /
    • pp.2011-2025
    • /
    • 2021
  • 고해상도 위성영상 분류에서 다양한 색상을 가지는 건물들과 같이 동일한 클래스에 속하지만 색상 정보가 상이한 화소들이 클래스를 구성하는 경우에는 클래스를 대표하는 색상 정보를 결정하기가 어렵다. 본 논문에서는 클래스의 대표적인 색상 정보를 결정하는 문제를 해결하기 위해 HSV(Hue Saturation Value)의 색상 채널을 분할하고 객체 기반의 분류를 수행하는 방법을 제안한다. 이를 위해 RGB 컬러 공간의 입력 영상을 HSV 컬러 공간의 성분으로 변환한 후에 색상(Hue) 성분을 일정 간격의 서브채널로 분할한다. 각 색상 서브채널에 대해 최소거리기반의 영상 분류를 수행하고 분류 결과를 영상 분할 결과와 결합한다. 제안한 방법을 아리랑3A 위성영상에 적용한 결과 overall accuracy는 84.97%, kappa coefficient는 77.56%로 나타났고 상용 소프트웨어 대비 분류 정확도가 10% 이상 개선된 결과를 보였다.

다중 비디오카메라에서 색 정보를 이용한 보행자 추적 (The Walkers Tracking Algorithm using Color Informations on Multi-Video Camera)

  • 신창훈;이주신
    • 한국정보통신학회논문지
    • /
    • 제8권5호
    • /
    • pp.1080-1088
    • /
    • 2004
  • 본 논문은 조도, 형태, 배경의 변화에 강인한 다중 비디오카메라에서 색 정보를 이용한 보행자 추적에 대하여 제안한다. 제안된 방법은 비디오카메라로부터 입력되는 영상의 색조만을 이용하여 배경영상과 물체가 존재하는 영상에서 차영상 기법과 가산투영 기법을 사용하여 이동물체를 검출한다. 검출된 이동물체 영역의 색조는 0도부터 360도 사이에서 15도씩 24단계로 분할된다. 검출된 이동물체 영역의 색조 분포도를 구한 후, 가장 높은 분포를 갖는 3개의 색조 레벨과 3개의 색조 레벨 사이의 차를 이동물체의 특징파라미터로 사용하였다. 제안된 방법의 유용성을 증명하기 위하여 조도와 형태의 변화가 발생한 보행자 영상과 조도, 형태, 배경의 변화가 발생한 보행자 영상을 이용하여 보행자를 감시한 결과 카메라에서 검출된 특정사람의 색조 분포 레벨과 색조 레벨 사이의 차는 2레벨 이하로 유지함을 보였고, 제안된 특징 파라미터로 특정사람이 자동 추적감시 됨을 확인하였다.

빠른 IHS 기법을 이용한 IKONOS 영상융합 (IKONOS Image Fusion Using a Fast Intensity-Hue-Saturation Fusion Technique)

  • 윤공현
    • 대한공간정보학회지
    • /
    • 제14권1호
    • /
    • pp.21-27
    • /
    • 2006
  • 영상융합의 많은 방법들 중에 IHS 기법은 많은 대용량의 자료를 빨리 융합할 수 있는 장점을 가지고 있다. IKONOS 영상에 대하여 IHS기법은 향상된 공간해상도의 결과를 보여주고 있으나 분광의 왜곡을 포함하고 있다. 즉, 융합된 다중파장대 영상과 원래 다중파장대영상의 비교시 분광정보의 왜곡이 나타난다. 이러한 문제를 해결하기 위해서 본 연구에서는 분광정보 조정을 통하여 빠른 처리 속도를 지니는 IHS기법을 제안하였다. 실험결과 제안된 방법은 고전적인 IHS 융합기법보다 속도와 영상 질의 측면에서 더 나은 결과를 보여주었다.

  • PDF

색상과 채도의 적응적 조합을 이용한 개선된 Mean-Shift 추적 (Improved Mean-Shift Tracking using Adoptive Mixture of Hue and Saturation)

  • 박한동;오정수
    • 한국정보통신학회논문지
    • /
    • 제19권10호
    • /
    • pp.2417-2422
    • /
    • 2015
  • 색상을 이용한 Mean-Shift 추적 알고리즘은 배경이 객체와 유사한 색상을 가질 때 객체 추적을 실패하는 문제가 있다. 본 논문은 색상 대신 새로운 조합 데이터 이용해 개선된 Mean-Shift 추적 알고리즘을 제안하고 있다. 새로운 데이터는 서로의 상관도가 낮은 색상과 채도의 적응적인 조합으로 생성된다. 즉, 제안된 알고리즘은 객체와 배경을 잘 구분되는 주 색요소와 그렇지 않은 부 색요소 선택하고, 주 색요소와 부 색요소의 상위 4 비트를 각각 조합 데이터의 상위 4비트와 하위 4 비트에 할당한다. 제안된 알고리즘은 배경이 객체와 유사한 색상을 갖는 추적 환경에서도 채도를 주 색요소로 선택함에 의해 추적 오차를 최대 2.0~4.2 화소, 평균 0.49~1.82 화소를 유지하면서 적절하게 객체를 추적한다.

조명 변화에 안정적인 손 형태 인지 기술 (A Robust Hand Recognition Method to Variations in Lighting)

  • 최유주;이제성;유효선;이정원;조위덕
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.25-36
    • /
    • 2008
  • 본 논문은 조명의 변화가 심한 영상에서 손 형태를 안정적으로 인지하는 기법에 관한 것이다. 제안한 방법은 HSI 색상공간에서 색상(Hue) 및 색상 기울기(Hue-Gradient)를 기반으로 정의된 배경모델을 구축하고, 실시간으로 입력되는 영상과의 배경차분(background subtraction)기법을 이용하여 배경과 손을 구분한다. 추출된 손의 영역으로부터 18가지의 특징요소를 추출하고 이를 기반으로 다중클래스 SVM(Support Vector Machine) 학습 기법을 사용하여 손의 형태를 인지한다. 제안 기법은 색상 기울기를 배경 차분에 적용함으로써, 조명 환경이 배경 모델의 조명과 다르게 급격한 변화가 이루어졌을 때도 안정적으로 손의 윤곽정보를 추출할 수 있도록 하였다. 또한, 실시간 처리를 저해하는 복잡한 손의 특성정보 대신, OBB의 크기에 대하여 정규화된 두 개의 고유값과 객체 기반 바운딩 박스(OBB)를 구성하는 16개 세부 영역에서의 손 윤곽픽셀의 개수를 손의 특성정보로 사용하였다. 본 논문에서는 급격한 조명 변화 상황에서 기존 RGB 색상요소를 기반으로 하는 배경차분법과 색상을 기반으로 하는 배경차분법, 본 논문에서 제안하는 색상 기울기 기반 배경 차분법의 결과를 비교함으로써 제안 기법의 안정성을 입증하였다. 6명의 실험대상자의 1부터 9까지의 수지화 2700개의 영상으로부터 손 특성 정보를 추출하고 이에 대하여 훈련을 통한 학습 모델을 생성하였다. 학습모델을 기반으로 실험자 6인의 손 형태 1620개의 데이터에 대하여 인지 실험을 실시하여 92.6%에 이르는 손 형태 인식 성공률을 얻었다.

국부 영역의 명도와 색상 히스토그램 유사도를 이용한 인체 추적 (Efficient Human body tracking Using Similarity Of Histogram Of Intensity and Hue Local Area)

  • 곽내정;송특섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.149-152
    • /
    • 2016
  • 본 논문에서는 한 대의 고정카메라로 입력되는 영상에서 인체를 추적하는 알고리즘을 제안한다. 제안방법은 입력영상과 배경영상의 회색조 영상과 색상 영상의 차영상을 구한 후 그 결과를 결합하여 배경과 전경을 분리하고 객체를 추출한다. 각 객체영역은 객체별로 식별 번호가 부여되고 추적된다. 객체에 겹침 또는 가림이 발생할 경우 객체의 국부영역의 명도와 색상의 히스토그램을 구하여 객체를 추적한다. 제안방법을 카메라로 입력되는 비디오영상에 적용한 결과 객체의 가림 및 겹침이 발생했을 때도 객체를 잘 추적하였다.

  • PDF